e-space
Manchester Metropolitan University's Research Repository

    Covariate-adjusted construction of gene regulatory networks using a combination of generalized linear model and penalized maximum likelihood

    Chatrabgoun, Omid ORCID logoORCID: https://orcid.org/0000-0001-5025-4760, Daneshkhah, Alireza ORCID logoORCID: https://orcid.org/0000-0001-7751-4307, Torkaman, Parisa, Johnston, Mark, Sohrabi Safa, Nader and Bashir, Ali Kashif ORCID logoORCID: https://orcid.org/0000-0003-2601-9327 (2025) Covariate-adjusted construction of gene regulatory networks using a combination of generalized linear model and penalized maximum likelihood. PLoS ONE, 20 (1). e0309556. ISSN 1932-6203

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (1MB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (239kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (64kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (28kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (27kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (28kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (27kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (29kB) | Preview
    [img]
    Preview
    Supplemental Material
    Available under License Creative Commons Attribution.

    Download (28kB) | Preview

    Abstract

    Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates. By considering the intrinsic property of the gene data which the number of variables is much greater than the number of available samples, a bootstrap version of multi-response multivariate GLM is used. To find most appropriate related species, a cross-validation technique has been used to compute the minimum square error of the fitted GLM under different regularization. The penalized maximum likelihood under a lasso or elastic net penalty is applied on the residual of fitted GLM to find the sparse precision matrix. Finally, we show that the presented algorithm which is a combination of fitted GLM and applying the penalized maximum likelihood on the residual of the model is extremely fast, and can exploit sparsity in the constructed GRNs. Also, we exhibit flexibility of the proposed method presented in this paper by comparing with the other methods to demonstrate the super validity of our approach.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    8Downloads
    6 month trend
    19Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record