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Abstract

Many machine learning techniques have been used to construct gene regulatory networks

(GRNs) through precision matrix that considers conditional independence among genes,

and finally produces sparse version of GRNs. This construction can be improved using the

auxiliary information like gene expression profile of the related species or gene markers. To

reach out this goal, we apply a generalized linear model (GLM) in first step and later a penal-

ized maximum likelihood to construct the gene regulatory network using Glasso technique

for the residuals of a multi-level multivariate GLM among the gene expressions of one spe-

cies as a multi-levels response variable and the gene expression of related species as a

multivariate covariates. By considering the intrinsic property of the gene data which the

number of variables is much greater than the number of available samples, a bootstrap ver-

sion of multi-response multivariate GLM is used. To find most appropriate related species, a

cross-validation technique has been used to compute the minimum square error of the fitted

GLM under different regularization. The penalized maximum likelihood under a lasso or

elastic net penalty is applied on the residual of fitted GLM to find the sparse precision matrix.

Finally, we show that the presented algorithm which is a combination of fitted GLM and

applying the penalized maximum likelihood on the residual of the model is extremely fast,

and can exploit sparsity in the constructed GRNs. Also, we exhibit flexibility of the proposed

method presented in this paper by comparing with the other methods to demonstrate the

super validity of our approach.

Introduction

In computer science, network construction techniques find applications in solving bioinfor-

matic challenges, such as the construction of gene regulatory networks (GRNs) from

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0309556 January 29, 2025 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chatrabgoun O, Daneshkhah A,

Torkaman P, Johnston M, Sohrabi Safa N, Kashif

Bashir A (2025) Covariate-adjusted construction of

gene regulatory networks using a combination of

generalized linear model and penalized maximum

likelihood. PLoS ONE 20(1): e0309556. https://doi.

org/10.1371/journal.pone.0309556

Editor: Zakariya Yahya Algamal, University of

Mosul, IRAQ

Received: December 24, 2023

Accepted: August 3, 2024

Published: January 29, 2025

Copyright: © 2025 Chatrabgoun et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files. We also uploaded all code and

data via Github link below https://github.com/

omid1364/GRN-Construction/tree/main.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5025-4760
https://orcid.org/0000-0001-7751-4307
https://orcid.org/0000-0003-2601-9327
https://doi.org/10.1371/journal.pone.0309556
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0309556&domain=pdf&date_stamp=2025-01-29
https://doi.org/10.1371/journal.pone.0309556
https://doi.org/10.1371/journal.pone.0309556
http://creativecommons.org/licenses/by/4.0/
https://github.com/omid1364/GRN-Construction/tree/main
https://github.com/omid1364/GRN-Construction/tree/main


microarray gene expression data, as highlighted by Yang-Yang [1]. This remains a challenging

and open problem, mainly due to the high-dimensionality property of microarray data cou-

pled with a limited number of samples, and making it difficult to establish appropriate mea-

sures for characterizing gene relationships. Many graphical models have been introduced for

gene network construction to infer network edges by utilizing marginal or partial correlations

between pairs of genes [2–9]. A standard tool for GRN construction is to fit a Gaussian graphi-

cal model to the gene data and then find the empirical sample inverse covariance matrix (pre-

cision matrix), and then force certain elements of the precision matrix towards zero [10, 11] to

produce a sparse version of GRN construction. However, estimation of the precision matrix

using the maximum likelihood (ML) of the fitted Gaussian distribution is reliable only when

the fraction (number of variables/number of observations) is very small [12]. Therefore, ML

estimation may also lack zero elements and become singular when the number of variables

exceeds the number of observations.

Despite the numerous algorithms designed for gene network construction, they can be cate-

gorized into partial correlation methods (GeneNet, ENA, SPACE), likelihood methods

(CDLasso, Glasso), information theory-based methods (PCA-CMI, CMI2NI), and Bayesian

methods (BayesianGlasso). In the partial correlation category, SPACE [13, 19] employs sparse

partial correlation estimation, utilizing hub gene information. ENA [14] is an ensemble-based

network aggregation method that combines networks from various reconstruction methods

into a more accurate single network. GeneNet [15] learns high-dimensional dependency net-

works from genomic data, allowing users to assign putative directions to edges. In the likeli-

hood methods category, the Coordinate Descent Algorithms for Lasso (CDLasso) [16] is a

penalized method using Logistic Regression Coordinate Descent Algorithms for Lasso Penal-

ized Regression. For information theory-based methods, Path Consistency Algorithm based

on Conditional Mutual Information (PCA-CMI) [17] infers gene regulatory networks from

gene expression data using a path consistency algorithm and conditional mutual information.

Conditional Mutual Inclusive Information-based Network Inference (CMI2NI) [18] utilizes a

new concept, Conditional Mutual Inclusive Information (CMI2), for accurate measurement of

direct dependences between genes. In the Bayesian methods category, Bayesian Graphical

Lasso implements a data-augmented block Gibbs sampler for simulating the posterior distri-

bution of concentration matrices. Graphical Lasso (Glasso) [10, 20] is a popular method for

estimating a sparse precision matrix, but it exhibits poor behavior in high-dimensional settings

like microarray datasets. Extensions and modifications have been made to Glasso, incorporat-

ing auxiliary information from other species or knowledge of gene interactions from pathway

databases like Pathway Common (PC) and Kyoto Encyclopedia of Genes and Genomes

(KEGG). In recent years, the construction of gene regulatory networks (GRNs) has seen signif-

icant advancements through the development of various computational algorithms. These

algorithms can be broadly categorized based on the underlying methodological approaches

they employ. Among these, several prominent methods include the well-conditioned estimator

for large-dimensional covariance matrices proposed by Ledoit and Wolf [21]. They introduced

an estimator for large-dimensional covariance matrices that is particularly well-conditioned,

enhancing the stability and accuracy of network construction. Shahdoust et al. [22] presented

the F-MAP method, which incorporates external hints into a Bayesian framework with a

Wishart prior to infer GRNs. Additionally, Kuismin and Sillanpää [23] proposed a method uti-

lizing the Wishart prior for sparse precision matrix estimation, offering simple yet effective

extensions for network construction.

In this study, a novel approach is proposed for constructing GRNs for one species by

leveraging information from related species. This involves a combination of fitting a General-

ized Linear Model (GLM) and then applying a penalized maximum likelihood, to enhance the

PLOS ONE Covariate-adjusted construction of gene regulatory networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0309556 January 29, 2025 2 / 18

https://doi.org/10.1371/journal.pone.0309556


GRN for one species by incorporating auxiliary information from the gene expression profiles

of related species. Therefore, what we have done in this paper for the construction of the GRN

is summarized in two following steps:

• Step 1: In the first step, we have done multilevel-multivariate GLM under different regulari-

zation techniques (Lasso, Ridge, Elastic net) such that the output variable is the gene expres-

sion of target specie that we want to construct sparse GRN for that, and the input variable is

the best specie that can be used as explanatory variable). We also have fixed the challenge of

singularity using bootstrap technique to obtain the residual matrix which is the result of reg-

ularized GLM of gene expression of one specie over the gene expression of another specie.

To find best specie as a best ancillary information, we have used cross-validation (CV) tech-

nique to calculate minimum square error (MSE) criteria as well.

• Step 2: When we obtained the residual matrix from Step 1, we create the penalized likelihood

for that matrix by fitting a multivariate Gaussian distribution based on the Glasso technique.

And by penalizing this likelihood under different penalties, we obtain the precision matrix.

By considering appropriate threshold on this matrix, we constructed sparse GRN for each

specie.

The efficiency and sparsity exploitation of the proposed method are demonstrated through

a comparison with other methods, highlighting its flexibility and superior validity. The

approach is applied to six related species of Drosophila melanogaster, resulting in more accu-

rate precision networks compared to existing methods. The subsequent sections elaborate on a

bootstrap version of GLM, utilizing cross-validation to determine proper regularization

parameters, followed by results and discussion, and concluding with insights from the

findings.

Materials and methods

Consider a multi-response multivariate GLM with p responses and q covariates as presented in

[24]. Suppose we have n independent observations (xi, yi);i = 1, . . ., n, where yi = (yi1, . . ., yip)
and xi = (xi1, . . ., xiq). We assume that the data are centered and standardized. Define Y = (y1,

. . ., yn)T and X = (x1, . . ., xn)T. In matrix notation,

Yn�p ¼

y11 y12 � � � y1p

y21 y22 � � � y2p

..

. ..
.
� � � ..

.

yn1 yn2 � � � ynp

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

y
1

y
2

..

.

yn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

we also show the matrix X by adding the unit vector as its first column as below:

Xn�ðqþ1Þ ¼

1

1

..

.

1

x11 x12 � � � x1q

x21 x22 � � � x2q

..

. ..
.
� � � ..

.

xn1 xn2 � � � xnq

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

ð1; x1Þ

ð1; x2Þ

..

.

ð1; xnÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;
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As pointed out in Rencher (2002), the relationship between the multi-level response Y and

the multivariate covariates X in GLM can be described by the following linear regression

model,

Y ¼ XBþ E; ð1Þ

where B = (B0, B1, . . ., Bq)
T is a (q + 1) × p coefficient matrix such that Bi = (βi1, βi2, . . ., βip) for

i = 0, 1, . . ., q, and we can write

Bðqþ1Þ�p ¼

b01 b02 � � � b0p

b11 b12 � � � b1p

..

. ..
.
� � � ..

.

bq1 bq2 � � � bqp

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð2Þ

and E = (E1, . . ., En)T is the error term such that for i = 1, 2, . . ., n, Ei = (ei1, ei2, . . ., eip). We

assume that the errors Ei for i = 1, . . ., n, are i.i.d. random variables following a multivariate

normal distribution Nð0;SÞ. Let yj = (y1j, . . ., ynj)T be the jth response vector (j = 1, .., p), based

on the multivariate regression of yj on X one can write

yj ¼ XBj þ Ej; j ¼ 1; 2; :::; p; ð3Þ

where Bj = (β0j, β1j, . . ., βqj)
T and Ej = (e1j, . . ., enj)T. In a genetic genomics frameworks, X rep-

resents the auxiliary information of similar species and Y represents the gene expressions of

the original species. Our interest is to estimate the coefficient matrix B = (B0, B1, . . ., Bq)
T

through p multivariate regression (3). By adjusting the effect of X on Y, conditioning on X, we

expect that false positives and/or false negatives of connections in the constructed GRN will be

reduced. A traditional approach to estimate Bj and finally matrix B is to use B̂j ¼

ðXTXÞ� 1yj; j ¼ 1; 2; :::; p; Therefore, by estimating Bj, for all j, the estimation of coefficient

matrix B can be obtained as below:

B̂ ¼ ðB̂1; B̂2; :::; B̂pÞ

¼ ððXTXÞ� 1y
1
; ðXTXÞ� 1y

2
; :::; ðXTXÞ� 1ypÞ

¼ ðXTXÞ� 1
ðy

1
; y

2
; :::; ypÞ

¼ ðXTXÞ� 1Y;

ð4Þ

We call B̂ in (4) the least squares estimator for B because it minimizes

ETE ¼ ðXB � YÞTðXB � YÞ;

the least squares estimate B̂ also minimizes the scalar quantities

tr½ðXB � YÞTðXB � YÞ� ¼
Xn

i¼1

Xp

j¼1

e2

ij;
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Therefore, we implement an estimation procedure with respect to each response in Y via

solving the following p optimization problems,

B̂ j ¼ argminBj
trfðyj � XBjÞ

T
ðyj � XBjÞg;

the complete process of the optimization can be found in [25, 26].

In genetics, the number of variables, i.e. genes, is very high and the number of samples is

very small. So, the number of samples is always much smaller than the number of variables. It

is often the case that the matrix XTX is “close” to singular. To overcome this challenge, one can

implement a penalized estimation procedure with respect to each response in Y via solving the

following p optimization problems,

B̂ j ¼ argminBj
½trfðyj � XBjÞ

T
ðyj � XBjÞg þ ljjjBjjj1�; ð5Þ

where λj, j = 1, . . ., p; are tuning parameters, and ||Bj||1 refers to the L1-norm (lasso penalty). If

the value of λj becomes zero, the model is usual GLM and if its value increases, the number of

independent variables in the model will decrease. Therefore, with λj equals to infinite, there

will be practically no variables in the model. Determining the value for this parameter is usu-

ally performed by the k-fold cross validation (CV) method. For more familiarity with this tech-

nique of determing the penalty value, one can refer to Hastie et al. (2015) [27], Efron and

Hastie (2016) [28] as well as James et al. (2013) [29]. Hence, our objective is to identify an opti-

mal value, denoted as λj, that facilitates the most accurate prediction of response values. It is

evident that excessively small λj values may result in overfitting, wherein the model tends to

incorporate noise in the data. Conversely, excessively large λj values may lead to underfitting,

where the procedure fails to capture the underlying relationship. In both scenarios, a high

error value is expected when assessed on the test data, a set of observations not included in the

initial sample. To implement the Cross-Validation (CV) technique, we initially partition the

original dataset into training and test sets. Subsequently, the training set is utilized to compute

the coefficient estimates, which are then validated on the test set. Let’s delve into the algorithm

in more detail. The initial dataset is randomly segmented into Q blocks of equal length. One of

these blocks is designated as the test set, while the remaining Q − 1 blocks collectively form the

training set. In practice, the number of blocks Q (often referred to as k-fold) is typically chosen

as 5 or 10. However, by considering the intrinsic property of gene data which the number of

variables is much greater than the number of available samples, by dividing training data set

into Q blocks in some cases in genetic data for each blocks will remain no more than one or

two samples. To fix this issue we apply a bootstrap version of GLM to re-sampling from the

existed dataset. Then, the GLM parameters can be computed using CV technique through reg-

ularization. We choose a grid search of values lj ¼ ½l
s
j � and calculate the regression coefficients

for each grid l
s
j value. Given these regression coefficients, we then compute the residual sum

of squares (RSS),

RSSq
lsj
¼
Xn

i¼1

ðyi �
Xk

j¼1

b̂jðq;l
s
jÞxijÞ

2
;

where q ¼ j;Q is the index of the block selected as the test set, and b̂jðq; l
s
jÞ stands for the coef-

ficients under the block test set and the grid value of l
s
j . One can obtain the average of these
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RSS values over all blocks (MSE) as

MSElsj ¼
1

Q

XQ

q¼1

RSSqlsj ;

where λj is then set equal to l
s
j that gives the minimum MSElsj . Another popular approach uti-

lizes the “one-standard-error rule” (see for example [30]. For each MSElsj the standard error of

the mean is calculated. Then, we select the largest l
s
j for which the MSElsj is within one stan-

dard error of the minimum MSE value. This way we obtain a “more regularized” model while

increasing the MSE by not more than one standard error. In the following, we apply the

LASSO, Ridge and Elastic Net regularization techniques to six species of Drosophila fly. After

finding optimal values for λj, j = 1, . . ., p; we can keep all the MSE values for fitting all GLMs

with regularization techniques such that the output variables are the matrix of Y (The target

spices that we want to construct sparse GRN for that) and the input variables are the matrix of

X (the best spices that can be used as an explanatory variable), and finally select the best ancil-

lary information for each spices based on the minimum value of the MSE. In fact, we want to

construct gene network by fitting a GLM based on the information from the original species

that is called the multi-response dependent variable, and the auxiliary information from

another species that is called the explanatory multivariate variable. By carry on a GLM between

the original species and other species and estimating the coefficients matrix, then the residual

matrix for constructing GRNs can be produced. We are going to fit GLM using LASSO, Ridge

and Elastic Net regularization. We use the R software for all calculations, namely its glmnet
package that allows fitting LASSO, Ridge and Elastic Net regularization techniques. When we

obtained the residual matrix from the previous step, we create the penalized likelihood for this

matrix based on the Glasso technique. And by penalizing this likelihood under different penal-

ties, we obtained the precision matrix. By considering appropriate threshold on this matrix, we

constructed sparce GRN for each spice.

In (5), ||.||1 refers to L1 norm means Lasso penalty. It is noteworthy that L2-norm (Ridge

penalty) as well as Elastic net norm, which is a combination of L1-norm and L2-norm, can also

be used here. However, in the general case, the parameter α in the glmnet package in R soft-

ware can be used to create different penalties such that α = 1 is applied for Lasso regression

and α = 0 for Ridge regression. Also, 0< α< 1 is used for the Elastic net norm as follows

ð1 � aÞ=2jjBjj2
2
þ ajjBjj1;

The advantage of Lasso norm over Ridge norm is that for a large value of λj many of the

coefficients of the regression model are precisely zero and this makes it easy to interpret the

model.

To assess the effectiveness of our algorithm in network reconstruction, we compute accu-

racy measures—Precision, Recall, Specificity, and Accuracy—for each network, comparing

them to the Gold Standard network.

Precision ¼
TP

ðTP þ FPÞ
; Recall ¼

TP
ðTP þ FNÞ

;

Accuracy ¼
ðTP þ TNÞ

ðTP þ TN þ FN þ FPÞ
; Specificity ¼

TN
ðTN þ FPÞ

:

Here, TN represents the number of true negatives, FP is the number of false positives, FN is the

number of false negatives, and TP is the number of true positive edges. For the purpose of
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comparative analysis, we include both widely adopted and cutting-edge approaches for esti-

mating covariance and precision matrices. Specifically, we consider Ledoit and Wolf [21],

Graphical Lasso (Glasso) [10, 31], F-MAP with Wishart prior [22], and the method proposed

by Kuismin and SillanpaÈaÈ [23].

Dataset

We applied our methodology to six datasets representing embryonic development time-course

expression in Drosophila flies of six different species: D. melanogaster (amel), D. ananassa

(ana), D. persimilis (per), D. pseudoobscura (pse), D.simulance (sim), and D.virilis (vir). The

phylogenetic tree depicting the relationships among these species is illustrated in Fig 1. The

data were sourced from the study by Kalinka et al. [32] and can be accessed in ArrayExpress

under the accession code E-MTAB-404. The dataset comprises arrays capturing various devel-

opmental time points, with multiple replicates for each species: 10 time points for amel, 13 for

vir, and 9 for ana, per, pse, and sim. Gene expressions were processed by averaging over abso-

lute expression levels of different replicates and undergoing a log2 transformation. We focused

on the expression of 2049 genes across the entire dataset, which serve as target genes for twelve

transcription factors forming the Gold Standard Network (GSN). A portion of chip-chip data

from MacArthur et al. [33] was utilized as the gold standard for gene regulatory networks,

encompassing 21 sequence-specific Drosophila transcription factors measured in D. melano-

gaster embryos. The GSN construction involved considering the relationships between twelve

TFs represented on the array and their 2049 target genes, as detailed in Table 1 (TFs and their

corresponding target gene counts). Further details about the GSN can be found in [34]. In the

subsequent section, we conduct an analysis of the Drosophila fly dataset, aiming to construct

Fig 1. The species’ phylogenetic tree graph is replicated here with the authorization of Joshi et al. (2015).

https://doi.org/10.1371/journal.pone.0309556.g001
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Gene Regulatory Networks (GRNs) for each species. This involves fitting a GLM and subse-

quently applying the Glasso technique to the residuals of the fitted GLM.

Results

Now, we construct and modify gene regulatory networks (GRNs) for one species using the fur-

ther information from gene expression profile of the related species as an explanatory variables

by performing a multi-level multivariate GLM under different regularizations (Lasso, Ridge

and Elasti net). For example, we model the gene expressions of D. melanogaster (amel) as a

multi-response variable and the gene expression of D. ananassa (ana) as a multivariate covari-

ate. Then, we estimate the regression coefficients matrix B as defined in (1) and (2). At the

end, we will find the residual matrix E in order to construct the adjusted GRNs accordingly by

Glasso. Here, we explain how to obtain the results for D. melanogaster (amel) and D. ananassa

(ana), the remaining variables follow the same procedure and only the variables will be

changed. For a multi-level response multivariate GLM between D. melanogaster (amel) and D.

ananassa (ana), we have p = 10 observations for response variable and also q = 9 observations

for the covariate such that the number of variables (genes) for both are 2049. We define the

relationship between the multi-level response amel and the multivariate covariate ana by a

GLM (1). When we obtain the optimized value of the hyperparameter λ in the regularized

GLM using CV techniques with k = 10, because the number of variables is much greater than

the number of available samples, the model tends to be near singular. Therefore, to solve this

problem, we apply a bootstrap version of GLM to re-sample from the existed dataset such that

the number of sample for amel and ana arrived at desirable number of samples. Here, we have

arrived at 1000 samples. To choose the number of re-sampling, we have performed an initial

experiments to identify a reasonable sample size (e.g., 500 samples), and conduct cross-valida-

tion to assess model performance with different sample sizes. Finally, we select a sample size

that provides a balance between computational efficiency and model accuracy which was

around 1000 samples.

To avoid overlap between re-sampled data, we add random multivariate Gaussian noise

with mean vector zero and S = σ2 I with very small σ2 = 0.001. To select this small value for

noise, we start with a small value to introduce optimal noise. And then gradually increase σ2

and evaluate the impact on model performance that balances noise introduction and model

accuracy. Then, we randomly divide the final data set into Q = 10 blocks of equal length. One

of the blocks is assigned the role of the test set while the remaining 9 blocks together constitute

the training set such that for Y1000×2049 and X1000×2050, we have B2050×2049 as coefficient matrix

and E1000×2049 as the error matrix that should be calculated to construct amended gene net-

work. Note that by using the multivariate regression of yj = (y1j, . . ., y1000×j)
T that is the jth

response vector of amel on the gene expression of ana that is X1000×2050, we can produce Bj

and Ej for j = 1, .., 2049, the jth vector of B and E, respectively. By repeating this process for all

columns of amel gene expression (via solving 2049 optimization problems as defined in (5))

the regularized estimation of the coefficient matrix B (B̂) is obtained by fitting 2049 multivari-

ate GLM under l1-norm or lasso regularization. To find the proper value for the regularization

parameter λ, we explain the strategy for the first column of Y1000×2049, i.e. y1 = (y11, . . .,

y1000×1)T, the remaining 2049 columns follow the same. First, We can visualize the coefficients

Table 1. Number of target genes for 12 transcription factors (TFs).

TF zD twi slp1 Sna run prd mad kr hb da cad gt1 dl

Number 1166 1164 212 291 158 313 40 518 358 1503 795 273

https://doi.org/10.1371/journal.pone.0309556.t001
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in B_1, the first column of B, such that the curves in the middle of Fig 2 corresponds to differ-

ent variables in X for Lasso regularization. It shows the path of the coefficients in B_1 against

the l1-norm as the regularization parameter λ varies. The axis above indicates the number of

nonzero coefficients at the current λ, which is the effective degrees of freedom (df) for the

lasso. So, we have so many choices for λ value under lasso penalty. The upper part of the plot

shows the number of non-zero coefficients B1 in the GLM for a given logλ. Also, the Fig 2

shows the coefficient of B1 for other penalties such that Ridge and Elastic Net regression versus

logλ. For the lasso, as λ increases, the coefficient estimates B1 are “shrunk” towards zero which

means that the norm of the estimates vector ||B1||2 decreases. For the Ridge, this number is

constant for all the λ values and equals the number of predictors in the data. Thus, although

the Ridge regression shrinks the coefficient estimates close to zero, even large λ values do not

produce estimates exactly equal to zero. The Elastic net (here 0.5) bridges the gap between

lasso and Ridge and mixes them. Therefore, since we have so many choices for λ value under

different penalties the Cross-validation (CV) is perhaps the simplest and most widely used

method to choose the best one. CV technique returns a list with all the ingredients of the

cross-validated fit as is shown in Plot Fig 3. This plot displays the cross-validation curve

(depicted by the red dotted line), accompanied by upper and lower standard deviation curves

represented as error bars across the λ sequence. Two noteworthy λ values are marked by verti-

cal dotted lines. The λ.min corresponds to the λ value associated with the minimum mean

cross-validated error, while λ.1se corresponds to the λ value that yields the most regularized

model, ensuring that the cross-validated error remains within one standard error of the mini-

mum. Therefore, the CV technique is used to find these two proper values of λ.min(bestlam)

and λ.1se(lam1se) for the λ parameter given a sample using (5). For all calculations, the glmnet
package in R software that allows fitting LASSO, Ridge and Elastic Net GLM has been used.

We select the λ parameter using the 10-fold CV procedure such that we utilize the cv.glmnet

Fig 2. The Coefficient of B1 for the LASSO, Ridge and Elastic Net (from top to bottom respectively) versus logλ. The upper part of each plot shows the number of

non-zero coefficients B1 in the fitted GLM.

https://doi.org/10.1371/journal.pone.0309556.g002
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command from the glmnet package. In our case, the Ridge regression gives ridge.bes-
tlam = 0.0036752 and ridge.lam1se = 0.1148763. The LASSO yields lasso.bestlam = 0.3271718

and lasso.lam1se = 0.4325019 correspondingly. Also, the Elastic Net produces elastic − net.bes-
tlam = 0.004616265 and elastic − net.lam1se = 0.1583596 accordingly. Hereafter, we use λ.min
(bestlam) for each fitted GLM between the gene expressions of one species and related species.

Now, we are in a position to find the best related species as an auxiliary information for

each species based on the most proper penalty and optimal value of bestlam. Then, we evaluate

the results based on the MSE measure to find the best multivariate covariate for each species

accordingly. Using test set, we are able to measure quality of different GLMs for each species.

Here, the set.seed command with a fixed input value of 112 is used to get results that can later

be reproduced by the reader. As can be seen in Table 2, the best explanatory variable for fitting

each GLM for finding the best matrix of residual accordingly is shown as bold number. For

example, for amel the best explanatory species is ana with Elastic Net penalty and the MSE

value of 2.99174 that is the minimum value between all other penalties and all other species as

multivariate covariate. Therefore, we need to obtain the matrix of residual for models of ame-
l*ana, ana*vir, sim*ana, per*pse, pse*per and vir*per; and then applying Glasso to pro-

duce final GRNs.

Now, after finding the best explanatory variable for each species based on the appropriate

penalty and proper value of regularization parameter λ, we want to use Glasso technique; and

at the end compare the resulted gene networks for each species with the previous methods

based on the different measures of accuracy. When the residual matrix is obtained for each

GLM, the final GRNs are constructed using Glasso. For example, we construct GRN for amel
which is adjusted using ancillary information from ana. This means we obtain the covariance

matrix for the residual of GLM, and find the precision matrix using Glasso accordingly. To

make a sparse precision matrix, the appropriate threshold is set to the 95th percentile of the

Fig 3. Cross-validated estimate of MSE error for the LASSO, Ridge and Elastic Net penalties (from top to bottom respectively) as a function of logλ. The dashed

lines show the location of the function minimum and the “one-standard-error” location.

https://doi.org/10.1371/journal.pone.0309556.g003
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conditional correlations in the estimated precision matrix. The choice of the 95th percentile as

the threshold for the conditional correlations in the estimated precision matrix is based on sev-

eral considerations aimed at balancing sparsity and retaining significant connections. First,

setting a high threshold such as the 95th percentile helps ensure that only the most significant

conditional correlations are retained. This approach effectively filters out weaker connections,

resulting in a sparser and more interpretable precision matrix. This balance is crucial in high-

dimensional data contexts, like gene regulatory networks, where retaining too many weak con-

nections can lead to overfitting and reduced model interpretability. Second, preliminary

experiments indicated that thresholds around the 95th percentile provided a good trade-off

between model complexity and performance. Lower thresholds tended to retain too many

connections, while higher thresholds excessively pruned the network, potentially omitting

important interactions. Third, similar approaches have been adopted in related literature,

where high-percentile thresholds are used to induce sparsity in precision matrices. While spe-

cific percentiles might vary, the principle of using a high percentile to filter significant connec-

tions is common.

Table 2. Measures of MSE for GLM of Y variables against X variables for λ.bestlam and different penalties.

Variables Y*X LASSO MSE Ridge MSE Elastic Net MSE

amel ana 3.29001 16.12004 2.99174

sim 3.7730 12.34170 3.86851

per 4.0201 15.84112 3.90572

pse 3.78923 16.55230 3.73234

vir 3.90457 15.02034 3.88271

ana amel 3.992780 17.45931 3.77229

sim 3.938383 20.87798 3.898258

per 3.985274 15.80054 3.88180

pse 3.982974 16.00082 3.870871

vir 3.89924 15.93392 3.07871

sim amel 3.99896 14.74933 3.64148

ana 3.677912 13.45473 3.634618

per 4.105761 16.17947 3.947643

pse 4.01390 14.50563 3.896814

vir 4.00167 14.13239 3.78279

per amel 3.02094 13.60881 3.11459

ana 3.33179 12.64797 3.340319

sim 3.588115 16.30806 3.569636

pse 2.960796 10.88034 3.098244

vir 3.60552 11.73325 3.21004

pse amel 3.809321 14.172185 3.721294

ana 3.626733 12.94426 3.614632

sim 3.954357 16.61443 3.929095

per 3.204816 11.02765 3.29077

vir 3.336205 12.178120 3.645420

vir amel 3.87721 15.452230 3.301920

ana 3.967615 12.145002 3.851377

sim 4.002072 16.524404 3.90220

per 3.794910 12.305780 3.105564

pse 3.778991 11.939420 3.36041

https://doi.org/10.1371/journal.pone.0309556.t002
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In Glasso technique, there is a (Non-negative) regularization parameter ρz such that the

higher value, the more regularization, the sparser the precision matrix. To choose the optimal

value of ρ, we have tired the value range of [0.1, 0.2, . . ., 0.9] to minimize the extended Bayes-

ian Information Criterion (eBIC) proposed in Foygel and others (2010). The diagnostic accu-

racy measures (TP, Precision, Recall, Accuracy and Specificity) are computed for all methods

in comparison with our proposed method in this paper for amel in Table 3. Also, the same

comparison between proposed method in this paper and other methods in literature for other

species are reported in Tables 4 to 8.

According to the obtained results from the proposed method in this paper, we plot final

GRN for amel that is adjusted based on the auxiliary information from ana. We have truncated

the final network for other species for brevity. Since the constructed networks include the

large number of edges, we just illustrate some parts of the final networks for amel Fig 4. These

graphs represent the interactions between 12 TFs and 100 genes. To choose these genes, we

partitioned the gene set to 21 groups and chose the one at random. The blue and grey nodes

indicate the TFs and their target genes, respectively. The red and green lines indicate the false

and true edges, respectively. All five graphs are sparser than the gold standard one.

Discussion

We systematically interpret and evaluate the results obtained for each species individually,

meticulously comparing the final outcomes of the method proposed in this paper with those of

previous methods. This comparative analysis is conducted based on various measures of accu-

racy to ensure a comprehensive assessment of our approach’s performance.

Table 3. Measures of diagnostic accuracy of constructed networks for amel species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method ana 897 371 0.45 0.09 0.75 0.96

F-MAP amel 810 340 0.42 0.05 0.72 0.97

sim 856 324 0.38 0.05 0.71 0.97

per 1285 509 0.40 0.07 0.71 0.96

pse 1036 474 0.46 0.07 0.72 0.97

vir 1721 609 0.35 0.09 0.70 0.94

Ledoit - 1635 590 0.36 0.08 0.70 0.94

Kuismin - 2230 742 0.33 0.11 0.69 0.92

Glasso - 480 167 0.35 0.02 0.71 0.98

https://doi.org/10.1371/journal.pone.0309556.t003

Table 4. Measures of diagnostic accuracy of constructed networks for ana species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method amel 1112 380 0.46 0.09 0.76 0.97

F-MAP ana 860 393 0.45 0.06 0.72 0.97

sim 976 472 0.48 0.07 0.72 0.97

per 1183 517 0.44 0.08 0.72 0.96

pse 1001 513 0.51 0.07 0.72 0.97

vir 1604 612 0.38 0.09 0.71 0.94

Ledoit - 1647 738 0.45 0.11 0.72 0.95

Kuismin - 1736 758 0.44 0.11 0.71 0.94

Glasso - 390 207 0.53 0.03 0.72 0.99

https://doi.org/10.1371/journal.pone.0309556.t004
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Table 5. Measures of diagnostic accuracy of constructed networks for sim species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method ana 946 364 0.45 0.08 0.74 0.97

F-MAP amel 802 349 0.43 0.05 0.72 0.97

ana 819 303 0.37 0.04 0.71 0.97

per 1246 478 0.38 0.07 0.71 0.96

pse 984 445 0.45 0.06 0.72 0.97

vir 1739 633 0.36 0.09 0.70 0.94

Ledoit - 1550 574 0.37 0.08 0.70 0.94

Kuismin - 2461 968 0.39 0.14 0.70 0.90

Glasso - 619 274 0.44 0.04 0.72 0.98

https://doi.org/10.1371/journal.pone.0309556.t005

Table 6. Measures of diagnostic accuracy of constructed networks for per species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method pse 1556 780 0.46 0.11 0.76 0.96

F-MAP amel 1595 710 0.45 0.10 0.72 0.95

sim 1556 707 0.45 0.10 0.72 0.95

amel 1438 678 0.47 0.10 0.72 0.96

pse 1761 823 0.47 0.11 0.72 0.95

vir 2014 791 0.39 0.11 0.71 0.93

Ledoit - 2389 994 0.42 0.14 0.71 0.92

Kuismin - 1980 770 0.39 0.11 0.70 0.93

Glasso - 423 179 0.42 0.03 0.72 0.99

https://doi.org/10.1371/journal.pone.0309556.t006

Table 7. Measures of diagnostic accuracy of constructed networks for pse species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method per 1457 676 0.48 0.11 0.76 0.96

F-MAP ana 1318 624 0.47 0.09 0.72 0.96

sim 1304 600 0.46 0.09 0.72 0.96

per 1608 696 0.43 0.10 0.71 0.95

amel 1162 590 0.05 0.08 0.72 0.97

vir 1959 793 0.40 0.11 0.71 0.93

Ledoit - 2143 932 0.43 0.13 0.71 0.93

Kuismin - 1859 600 0.45 0.14 0.70 0.93

Glasso - 432 186 0.43 0.02 0.72 0.99

https://doi.org/10.1371/journal.pone.0309556.t007

Table 8. Measures of diagnostic accuracy of constructed networks for vir species.

approach species Edges TP Precision Recall Accuracy Specificity

Proposed method per 2142 942 0.48 0.14 0.76 0.95

F-MAP ana 1951 890 0.46 0.13 0.72 0.94

sim 2031 915 0.45 0.13 0.71 0.94

per 2094 964 0.46 0.14 0.71 0.94

pse 2117 996 0.47 0.15 0.72 0.94

amel 1881 873 0.46 0.13 0.72 0.94

Ledoit - 2622 1181 0.45 0.17 0.71 0.92

Kuismin - 2138 976 0.46 0.14 0.72 0.93

Glasso - 246 144 0.58 0.02 0.72 0.99

https://doi.org/10.1371/journal.pone.0309556.t008
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amel: Proposed method in this paper has the highest accuracy (75%) in comparison with all

other methods. The Precision value is higher than all previous methods except F-MAP’s method

when pse has been used as an auxiliary information. The specificity of our method is 96%, so it is

very close to the other methods. Recall is 0.08% that is smaller than Kuismin’s method and mostly

equals or higher than all other methods. So, the performance of our method is appropriate.

ana: The proposed method presented in this paper demonstrates the highest accuracy rate of

76% when compared to all other methods. In terms of Precision, our method outperforms all

previous approaches except for F-MAP’s method when pse is utilized as auxiliary information.

With a specificity of 97%, our method closely aligns with the performance of other methods.

However, the recall rate of our method, at 0.09%, is lower than that of Ledoit’s method and

Kuismin’s method, but generally comparable to or higher than other methods. Therefore, based

on these findings, we can conclude that our method exhibits a satisfactory level of performance.

sim: The proposed method in this paper achieves the highest accuracy rate of 74% com-

pared to all other methods examined. Additionally, the Precision value of our method sur-

passes that of all previous methods. With a specificity of 97%, our method closely aligns with

the performance of the other methods evaluated. However, the recall rate of our method, at

0.08%, is lower than that of Kuismin’s method, while generally being equal to or higher than

the recall rates of other methods.

Fig 4. Sub-networks (interactions among 100 genes) for amel presented for different methods: (a) Proposed method in this paper for ame, (b)

F-MAP [22], (c) Ledoit & Wolf [21], (d) Kuismin & Sillanpaa [23], (e) GLasso [10, 31]and (f) Gold Standard.

https://doi.org/10.1371/journal.pone.0309556.g004
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per: The proposed method presented in this paper achieves the highest accuracy rate of

76% compared to all other methods investigated. Moreover, the Precision value of our method

surpasses that of all previous methods, except for F-MAP’s method when amel and pse are

employed as auxiliary information. In terms of specificity, our method exhibits a value of 96%,

which closely aligns with the performance of the other methods. However, the recall rate of

our method, at 0.09%, is lower than that of Ledoit’s method, yet generally comparable to or

higher than other methods. Based on these results, we can conclude that the performance of

our method is deemed appropriate.

pse: The proposed method described in this paper achieves the highest accuracy rate of

76% when compared to all other methods examined. Furthermore, the Precision value of our

method surpasses that of all previous methods, except for F-MAP’s method when pse is uti-

lized as auxiliary information. With a specificity of 97%, our method closely aligns with the

performance of the other methods investigated. However, the recall rate of our method, at

0.11%, is lower than that of Ledoit’s method, yet generally comparable to or higher than other

methods. Therefore, based on these findings, we can conclude that the performance of our

method is considered appropriate.

vir: The proposed method presented in this paper demonstrates the highest accuracy rate

of 76% compared to all other methods analyzed. Additionally, the Precision value of our

method surpasses that of all previous methods, except for the Glasso method. With a specificity

of 95%, our method closely aligns with the performance of the other methods assessed. How-

ever, the recall rate of our method, at 0.14%, is lower than that of Ledoit’s method, yet generally

comparable to or higher than other methods. Based on these results, we can conclude that the

performance of our method is considered appropriate.

Therefore, these measures strongly support the notion that our method significantly

enhances the quality of the constructed networks when compared to three other approaches.

Conclusion

In this paper we introduced ML technique to construct gene regulatory networks (GRNs)

through precision matrix that considers conditional independence between genes. This GRN

construction was improved using the external knowledge about gene interactions drawn from

the other related species gene expression data. We used a combination of fitted GLM and

penalized maximum likelihood to construct GRN based on the residuals of a multi-level multi-

variate GLM between the gene expressions of one species as a multi-levels response variable

and the gene expression of related species as a multivariate covariates. By considering the

intrinsic property of gene data which the number of variables is much greater than the number

of available samples, a bootstrap version of multi-response multivariate GLM was computed

that uses cross-validation to find the regularization parameters. Then, we constructed GRNs

based on the obtained covariance matrix produced from the residual of the fitted GLM using

final algorithm of adjusted Glasso. Finally, we showed that the presented algorithm is

extremely is accurate. Also, we exhibited flexibility of the proposed method presented in this

paper by comparing with the other methods to demonstrate the super validity of our approach.
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