Goosey-Tolfrey, Victoria L., Alfano, H. and Fowler, Neil E. (2007) The influence of crank length and cadence on mechanical efficiency in hand cycling. European journal of applied physiology, 102 (2). pp. 189-194. ISSN 1439-6327
File not available for download.Abstract
The purpose of this study was to determine the effect of crank length and cadence on mechanical efficiency in hand cycling. Eight wheelchair dependent, high performance athletes completed four 4-min submaximal exercise bouts at a constant power output of 90 W over the different experimental conditions (crank length, pedal rate) using a sports hand bike (Draft, Godmanchester, UK). Two different crank lengths (180 and 220 mm) were tested at two different cadences (70 and 85 rev min−1) using the synchronous mode of cranking. Physiological measures of oxygen uptake VO2, minute ventilation, blood lactate (B[La]), heart rate (HR), rate of perceived exertion (RPE) were recorded, gross (GE) and net (NE) efficiency were calculated. A two-way ANOVA with repeated measures was applied to determine the effects of crank length, cadence and their interaction on these physiological measures. Both GE and NE were significantly higher and VO2 significantly lower for the 180 mm crank (P < 0.05). No significant main effect was found for cadence on the physiological measures (P > 0.05). Likewise, no interactions between crank length and pedal rate were found. There was however, a trend observed with HR and B[La] often lower with the 180 mm crank, indicating lower physiological stress. The RPE data supported this finding, with a tendency for lower ratings with the 180 mm crank (9 ± 2 vs. 10 ± 3). The short crank length when used at 85 rev min−1 was found to be the most efficient (GE 21.4 ± 3.1%). In conclusion, crank length has a significant effect on ME in hand cycling. A shorter crank length of 180 mm was found to be more efficient than the 220 mm, regardless of pedal rate during hand cycling.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.