Mahmoudabadi, A. Zarei, Boote, Valerie, Verran, Joanna, Johnson, Elizabeth and Drucker, David B. (2003) Phospholipid molecular species distributions of Candida isolates from the UK and Iran. Journal of applied microbiology, 95 (4). pp. 883-9. ISSN 1364-5072
File not available for download.Abstract
AIMS: Some species of Candida have been shown to differ with respect to their polar lipid fingerprints when analysed by fast atom bombardment mass spectrometry (FABMS). The aims of this study were to contribute to the existing body of information by (i) examining representatives of species not previously examined and (ii) seeking strains differences associated with country of origin (UK or Iran). METHODS AND RESULTS: FABMS analysis was performed on extracted lipids of 22 strains representing eight species of Candida. The most abundant anion (19 isolates) in spectra was with mass to charge (m/z) 281, corresponding to C18:1 carboxylate. The major phospholipid analogue anions were m/z 515 and 501 (13 strains). These anions were putatively identified as the phosphatidyl molecular species PA(23 : 2) and PA(22 : 2) respectively. Data for strain pairs were compared using the Pearson's coefficient of linear correlation. The values generated were used to cluster strains by nearest-neighbour linkage, using both carboxylate and phospholipid analogue anion data. Isolates of C. parapsilosis were clearly distinct from other isolates. Iranian isolates tended to cluster together when phospholipid anion data were used. However, if carboxylate anion data were used, four Iranian isolates of C. albicans were tightly clustered with three UK isolates, of which two were C. albicans and one was C. dubliniensis. CONCLUSION: It is concluded that both lower, and higher, mass peaks in FABMS spectra can be of potential value in comparing Candida isolates from different countries and from different species. SIGNIFICANCE AND IMPACT OF THE STUDY: When polar lipids of different Candida species are compared, it is important to bear in mind that geographical differences affect results as has been observed with bacteria in similar studies.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.