e-space
Manchester Metropolitan University's Research Repository

    Osseointegration and histopathological evaluation of titanium-titanium diboride composite compared to pure titanium implant materials prepared by powder metallurgy (in vivo study)

    Aljafery, Ali Mohammad Ali ORCID logoORCID: https://orcid.org/0000-0002-6545-800X, Fatalla, Abdalbseet A ORCID logoORCID: https://orcid.org/0000-0001-5320-8559 and Haider, Julfikar ORCID logoORCID: https://orcid.org/0000-0001-7010-8285 (2024) Osseointegration and histopathological evaluation of titanium-titanium diboride composite compared to pure titanium implant materials prepared by powder metallurgy (in vivo study). Journal of Biomedical Materials Research Part B Applied Biomaterials, 112 (10). e35490. ISSN 1552-4973

    [img] Accepted Version
    File will be available on: 24 September 2025.
    Available under License In Copyright.

    Download (1MB)

    Abstract

    The efficacy and osseointegration rate of an implant depend on its biocompatibility. Modern implantology seeks fast and reliable osseointegration, which is essential for clinical success. The objective of this research was to assess the osseointegration and biocompatibility of a titanium–titanium diboride composite (Ti-TiB2) in rabbits in contrast to those of pure titanium (Ti). A total of 64 cylindrical implant specimens were fabricated, consisting of two sets: pure Ti (32 implants) and Ti-TiB2 composite (32 implants). In this study, two implants were implanted per tibia (left and right tibias) in 16 white male New Zealand rabbits, for a total of four implants per rabbit (4 × 16 = 64 implants). A pushout test was used to assess implant specimen-bone bonding after 2 and 6 weeks of healing. The experiment utilized five rabbits per healing phase, which means that 20 implants per time point were used for the pushout tests. (10 for pure Ti and 10 for the composite). Histology was used to examine the tissue response to biocompatibility, and histomorphometry was used to measure new bone growth at the two time points. With three rabbits per time point, 12 implants were employed for the histological analyses. After implantation, the pushout shear strength results revealed that the mean shear strength of the Ti-TiB2 implant specimens (5.4 ± 0.029 MPa for 2 weeks, 7.9 ± 0.029 MPa for 6 weeks) was statistically greater (p < 0.0001) than that of the pure Ti implant specimens (5.1 ± 0.015 MPa for 2 weeks, 6.6 ± 0.047 MPa for 6 weeks). After 2 weeks, woven bone tissues were observed around the pure titanium implants, and active osteoid tissue around the composite implants exhibited significant differences in new bone formation areas (NBFAs) (0.54 ± 0.004 mm2 for Ti and 0.65 ± 0.003 mm2 for the composite). After 6 weeks, there was new bone formation with osteocytes around the pure titanium implants (NBFA of 2.44 mm2) and osteoid maturation with the observation of reversal lines around the composite implants (NBFA of 2.89 mm2). The developed Ti-TiB2 material was biocompatible and demonstrated superior bone growth compared to that of the pure Ti materials after 2 and 6 weeks.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    1Download
    6 month trend
    63Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record