e-space
Manchester Metropolitan University's Research Repository

    The Structure and Function of the Retina in Multiple Sclerosis

    Broomfield, Nicola Andrea (2024) The Structure and Function of the Retina in Multiple Sclerosis. Doctoral thesis (DClinSci), Manchester Metropolitan University.

    [img]
    Preview

    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (10MB) | Preview

    Abstract

    Background: Multiple sclerosis (MS) is a complex heterogenous autoimmune inflammatory disease with a prolonged and variable time course. The visual system is frequently implicated, either as the presenting symptom, or, with advancement of the disease. This has been documented in the literature with changes in visual acuity (VA) that are accompanied by functional changes in the optic nerve, measured with the visual evoked potential (VEP) and possible retrograde degeneration involving the retinal ganglion cells in the retina, measured with the pattern reversal electroretinogram (PERG). However, inflammatory episodes may be clinical or subclinical in nature and may go unrecognised. Originating from the same embryological origins, the effect of inflammation in MS on the on the retina is less well known. The research hypothesis was that there is a measurable difference in the function of retinal cells in patients with newly diagnosed multiple sclerosis, suggestive of inflammatory retinopathy compared to healthy controls. The overall aim was to investigate any differences in the electrophysiological function of the visual pathway of patients newly diagnosed with MS compared to healthy controls. Methods: The visual system is explored with clinical (VA), electrophysiology (VEP and electroretinography (ERG – pattern and flash) and structural (OCT) measures, in patients presenting with symptoms suggestive of MS to a specialist service. This prospective case control study investigates the visual pathway at the earliest stage of the disease to look for differences in structure and function between patients and healthy volunteers that might serve as a biomarker in the future. Results: There were a number of variables that were significantly different between the two groups, logistic regression analysis found that VA (p 0.038) and VEP P100 peak-time (p 0.014) from the right eye as significant. Dividing the participants by prolongation of the VEP P100 peak-time as defined in clinical practice, found a number of ERG amplitude variables as well as VA that were consistently different between the groups regardless of symptoms. Conclusion: The study confirms optic nerve involvement in MS with VEP and VA abnormalities consistent with the literature in this cohort. Additionally, VA and some ERG amplitude variables were significantly reduced in participants with MS, when grouped according to VEP P100 peak-time, suggesting inner and outer retinal changes. Further work would be required to confirm these findings. No OCT structural changes were found in any of the analysis that included the macula thickness, ganglion cell layer or retinal nerve fibre layer. Keywords: multiple sclerosis (MS), visual evoked potential (VEP), pattern electroretinogram (PERG), electroretinogram (ERG), optical coherence tomography (OCT)

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    99Downloads
    6 month trend
    332Hits

    Additional statistics for this dataset are available via IRStats2.

    Repository staff only

    Edit record Edit record