Shi, X, Chen, J, Beake, BD, Liskiewicz, TW and Wang, Z (2021) Dynamic contact behavior of graphite-like carbon films on ductile substrate under nano/micro-scale impact. Surface and Coatings Technology, 422. ISSN 0257-8972
|
Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
Coated components are often subjected to high strain rate and repetitive contact damage in practical service, so how to quickly evaluate the dynamic contact behavior of the thin protective coating is particularly important. Highly resolved single nano-impact and novel multiple micro-scale impact tests were used to investigate the dynamic hardness and fatigue failure of 0.55–1.52 μm thick graphite-like carbon (GLC) films on 316L stainless steel with varied thickness, respectively. By analyzing the impact depth and velocity before and after the indenter first contact with the sample, the dynamic hardness of GLC film/substrate system was obtained reasonably based on the energy approach in single nano-impact tests. Possible reasons for the higher dynamic hardness than quasi-static hardness include overestimation of the plastic absorbed energy Wp and the strain rate sensitivity of materials. The thickest film/substrate system studied had a higher dynamic hardness than the thinner films due to its higher load carrying capability. Results with the multiple micro-impact technique showed that a GLC film with intermediate thickness (1.1 μm) was more resistant to the impact fatigue, while the thinnest film, 0.55 μm, exhibited more pronounced radial cracks under the indent and the thickest film, 1.52 μm, showed more significant edge ring cracks, these differences resulting from the combined action of stress distribution, film microstructure and mechanical properties.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.