e-space
Manchester Metropolitan University's Research Repository

    Additively manufactured graphitic electrochemical sensing platforms

    Foster, CW ORCID logoORCID: https://orcid.org/0000-0002-5487-2803, Elbardisy, HM, Down, MP, Keefe, EM, Smith, GC and Banks, CE (2019) Additively manufactured graphitic electrochemical sensing platforms. Chemical Engineering Journal, 381. ISSN 1385-8947

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (1MB) | Preview

    Abstract

    © 2019 Additive manufacturing (AM)/3D printing technology provides a novel platform for the rapid prototyping of low cost 3D platforms. Herein, we report for the first time, the fabrication, characterisation (physicochemical and electrochemical) and application (electrochemical sensing) of bespoke nanographite (NG)-loaded (25 wt%) AM printable (via fused deposition modelling) NG/PLA filaments. We have optimised and tailored a variety of NG-loaded filaments and their AM counterparts in order to achieve optimal printability and electrochemical behaviour. Two AM platforms, namely AM macroelectrodes (AMEs) and AM 3D honeycomb (macroporous) structures are benchmarked against a range of redox probes and the simultaneous detection of lead (II) and cadmium (II). This proof-of-concept demonstrates the impact that AM can have within the area of electroanalytical sensors.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    510Downloads
    6 month trend
    215Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record