e-space
Manchester Metropolitan University's Research Repository

    Effects of Heat Exposure and Volumetric Compression on Poisson's Ratios, Young's Moduli, and Polymeric Composition During Thermo-Mechanical Conversion of Auxetic Open Cell Polyurethane Foam

    Duncan, O, Clegg, F, Essa, A, Bell, AMT, Foster, L, Allen, T ORCID logoORCID: https://orcid.org/0000-0003-4910-9149 and Alderson, A (2019) Effects of Heat Exposure and Volumetric Compression on Poisson's Ratios, Young's Moduli, and Polymeric Composition During Thermo-Mechanical Conversion of Auxetic Open Cell Polyurethane Foam. Physica Status Solidi (B) Basic Research, 256 (1). ISSN 0370-1972

    [img]
    Preview
    Accepted Version
    Available under License In Copyright.

    Download (1MB) | Preview

    Abstract

    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The effects of thermo-mechanical auxetic foam conversion parameters on the Young's modulus and Poisson's ratio of open-cell polyurethane foam are related to changes in chemical bonding and cell structure. Applied volumetric compression, conversion temperature, and duration are reported on foam Young's modulus, Poisson's ratio, and structural stability. Fourier transform infrared spectral analysis on samples converted at and above 160 °C strongly indicates a hydrogen bond interaction increase in urea groups (C=O---H-N) and an increase in hydrogen bonding population. Spectral changes inferred soft segment degradation following extensive heat exposure (200 °C, 180 min), specifically a shift and intensity change in CH2 and C-O-C polyol bands and a broad baseline increase between 3600 and 2400 cm−1. These changes are linked to (i) resistance to dimensional recovery over time and during re-heating; (ii) Poisson's ratio becoming negative, then zero in tension or marginally positive in compression; (iii) Young's Modulus reducing then increasing; (iv) mass loss, evidenced by thermogravimetric analysis increasing from 150 °C. The minimum mean values of Poisson's ratio of ≈−0.2 (to 10% compression/tension) are comparable to other studies. All samples that retain their imposed compression over time are isotropic, with near constant Young's moduli and Poisson's ratio (to 10% compression/tension).

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    440Downloads
    6 month trend
    240Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record