Yunus, R, Arif, O, Afzal, H, Amjad, MF, Abbas, H, Bokhari, HN, Haider, ST, Zafar, N and Nawaz, R ORCID: https://orcid.org/0000-0001-9588-0052 (2019) A Framework to Estimate the Nutritional Value of Food in Real Time Using Deep Learning Techniques. IEEE Access, 7. pp. 2643-2652. ISSN 2169-3536
|
Published Version
Available under License In Copyright. Download (5MB) | Preview |
Abstract
There has been a rapid increase in dietary ailments during last few decades, caused by unhealthy food routine. Mobile-based dietary assessment systems that can record real time images of meal and analyze it for nutritional content can be very handy and improve the dietary habits, and therefore, result in healthy life. This paper proposes a novel system to automatically estimate food attributes such as ingredients and nutritional value by classifying the input image of food. Our method employs different deep learning models for accurate food identification. In addition to image analysis, attributes and ingredients are estimated by extracting semantically related words from a huge corpus of text, collected over the Internet. We performed experiments with a dataset comprising 100 classes, averaging 1000 images for each class to acquire top 1 classification rate of up to 85 percent. An extension of a benchmark dataset Food-101 is also created to include sub-continental foods. Results show that our proposed system is equally efficient on basic Food- 101 dataset and its extension for sub-continental foods. The proposed system is implemented as a mobile app that has its application in healthcare sector.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.