Thorpe, AA, Dougill, GM, Vickers, L, Reeves, N, Cooper, G, Sammon, C and Le Maitre, CL (2017) Thermally Triggered Hydrogel Injection Into Bovine Intervertebral Disc Tissue Explants Induces Differentiation Of Mesenchymal Stem Cells And Restores Mechanical Function. Acta Biomaterialia, 54. pp. 212-226. ISSN 1742-7061
|
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (4MB) | Preview |
Abstract
We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6 weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.