e-space
Manchester Metropolitan University's Research Repository

    Quantifying non-Newtonian effects in rotating boundary-layer flows

    Griffiths, PT, Garrett, SJ, Stephen, SO and Hussain, Z (2017) Quantifying non-Newtonian effects in rotating boundary-layer flows. European Journal of Mechanics - B/Fluids, 61 (2). pp. 304-309. ISSN 0997-7546

    [img]
    Preview

    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (665kB) | Preview

    Abstract

    © 2016 Elsevier Masson SAS The stability of the boundary-layer on a rotating disk is considered for fluids that adhere to a non-Newtonian governing viscosity relationship. For fluids with shear-rate dependent viscosity the base flow is no longer an exact solution of the Navier–Stokes equations, however, in the limit of large Reynolds number the flow inside the three-dimensional boundary-layer can be determined via a similarity solution. The convective instabilities associated with flows of this nature are described both asymptotically and numerically via separate linear stability analyses. Akin to previous Newtonian studies it is found that there exists two primary modes of instability; the upper-branch type I modes, and the lower-branch type II modes. Results show that both these modes can be stabilised or destabilised depending on the choice of non-Newtonian viscosity model. A number of comments are made regarding the suitability of some of the more well-known non-Newtonian constitutive relationships within the context of the rotating disk model. Such a study is presented with a view to suggesting potential control mechanisms for flows that are practically relevant to the turbo-machinery industry.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    263Downloads
    6 month trend
    407Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record