Slevin, M ORCID: https://orcid.org/0000-0003-3767-4861, Krupinski, J ORCID: https://orcid.org/0000-0002-5136-8898, Kumar, P, Gaffney, J and Kumar, S (2005) Gene activation and protein expression following ischaemic stroke: strategies towards neuroprotection. Journal of Cellular and Molecular Medicine, 9 (1). pp. 85-102. ISSN 1582-1838
|
Published Version
Available under License In Copyright. Download (6MB) | Preview |
Abstract
Current understanding of the patho-physiological events that follow acute ischaemic stroke suggests that treatment regimens could be improved by manipulation of gene transcription and protein activation, especially in the penumbra region adjacent to the infarct. An immediate reduction in excitotoxicity in response to hypoxia, as well as the subsequent inflammatory response, and beneficial control of reperfusion via collateral revascularization near the ischaemic border, together with greater control over apoptotic cell death, could improve neuronal survival ultimately patient recovery. Highly significant differences in gene activation between animal models for stroke by middle cerebral artery occlusion, and stroke in patients, may explain why current treatment strategies based on animal models of stroke often fail. We have highlighted the complexities of cellular regulation and demonstrated a requirement for detailed studies examining cell specific protective mechanisms after stroke in humans.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.