e-space
Manchester Metropolitan University's Research Repository

    Optimized Energy Consumption of Electric Vehicles with Driving Pattern Recognition for Real Driving Scenarios

    Moulik, Bedatri, Kaur, Sanmukh ORCID logoORCID: https://orcid.org/0000-0002-1750-5684 and Ijaz, Muhammad ORCID logoORCID: https://orcid.org/0000-0002-0050-9435 (2025) Optimized Energy Consumption of Electric Vehicles with Driving Pattern Recognition for Real Driving Scenarios. Algorithms, 18 (4). 204. ISSN 1999-4893

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (5MB) | Preview

    Abstract

    Energy management strategies (EMS) in the context of electric or hybrid vehicles can optimize the available energy by minimizing consumption. Most optimization-based EMS are not real-time-applicable for an accurate estimation of future consumption. The performance of these strategies also strongly depends on the driving patterns, which may be influenced by road and traffic conditions, among other factors such as driving style, weather, vehicle type, etc. The primary contribution of this work is to develop a novel two-layer driving pattern recognition (DPR) system for roadway type and traffic classification, thus enabling the identification of unknown patterns for the enhancement of the prediction of energy consumption of an electric vehicle (EV). The novelty of this work lies in the development of a strategy based on real-time data which is capable of classifying driving patterns and implementing an optimized EMS based on the results of the DPR. In the approach, first, labels are defined based on statistical features related to speed followed by the creation of representative driving patterns (RDPs). A neural network-based classifier is then employed for classification into six classes based on four features. A training accuracy of 97.7% is achieved with the classification of unknown speed profiles into the known RDPs. Testing with patterns from two different test routes shows an accuracy of 97.45% and 96.98% during morning and 96.65% and 94.12% during evening hours, respectively. Apart from the route and time of data collection, accuracy is also a function of sampling time horizon and the threshold values chosen for the features. A sensitivity analysis was also performed to evaluate the relative importance of each feature. An EMS based on sequential quadratic programming (SQP) was combined with DPR for the computation of optimal energy consumption. Simulation results show that maximum and minimum energy savings of 61% and 18% were obtained under suburban low traffic and highway high traffic conditions, respectively. An eco-driving or driver speed advisory system may further be developed based on information obtained from multiple routes and varying traffic scenarios.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    1Download
    6 month trend
    7Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record