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Abstract: Energy management strategies (EMS) in the context of electric or hybrid vehicles
can optimize the available energy by minimizing consumption. Most optimization-based
EMS are not real-time-applicable for an accurate estimation of future consumption. The
performance of these strategies also strongly depends on the driving patterns, which may
be influenced by road and traffic conditions, among other factors such as driving style,
weather, vehicle type, etc. The primary contribution of this work is to develop a novel two-
layer driving pattern recognition (DPR) system for roadway type and traffic classification,
thus enabling the identification of unknown patterns for the enhancement of the prediction
of energy consumption of an electric vehicle (EV). The novelty of this work lies in the
development of a strategy based on real-time data which is capable of classifying driving
patterns and implementing an optimized EMS based on the results of the DPR. In the
approach, first, labels are defined based on statistical features related to speed followed by
the creation of representative driving patterns (RDPs). A neural network-based classifier is
then employed for classification into six classes based on four features. A training accuracy
of 97.7% is achieved with the classification of unknown speed profiles into the known
RDPs. Testing with patterns from two different test routes shows an accuracy of 97.45%
and 96.98% during morning and 96.65% and 94.12% during evening hours, respectively.
Apart from the route and time of data collection, accuracy is also a function of sampling
time horizon and the threshold values chosen for the features. A sensitivity analysis was
also performed to evaluate the relative importance of each feature. An EMS based on
sequential quadratic programming (SQP) was combined with DPR for the computation
of optimal energy consumption. Simulation results show that maximum and minimum
energy savings of 61% and 18% were obtained under suburban low traffic and highway
high traffic conditions, respectively. An eco-driving or driver speed advisory system may
further be developed based on information obtained from multiple routes and varying
traffic scenarios.

Keywords: electric vehicles; energy consumption; driving pattern recognition; representative
driving cycles; optimization

1. Introduction
Electric and hybrid vehicles (HV) are becoming increasingly popular due to their

environmental benefits. Energy management strategies (EMSs) include different methods
or techniques that aim to manage multiple aspects of optimal energy consumption to
improve the performance of electric vehicles (EVs) [1]. The integration of EMS with EVs
as a part of the eco-driving protocol may enable the smart management of driving speed
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profiles and help in achieving long-term sustainability goals. The main significance of
optimized energy management lies in the achievement of better performance of vehicles
with the desired set of characteristics, as defined by the user. An optimal EMS is an
important requirement to be implemented to produce a final product which is not only
smart and automated but also energy efficient.

In the past [2–6], different types of methods have been adopted for energy management
in EVs or hybrid electric vehicles (HEVs). Depending on the mode of operation, the
strategies can be classified as online or offline. In Figure 1, a broad classification of EMSs is
listed based on online and offline approaches.

Figure 1. Classification of EMSs for electric and HVs [2–6]. 

Figure 15. Energy consumption as predicted by the RDPs. 

Figure 1. Classification of EMSs for electric and HVs [2–6].

Online approaches are generally real-time-based algorithms such as predictive and
instantaneous optimization techniques, whereas offline approaches are non-real-time
and can provide a globally optimal solution. Predictive (prediction-based) and cogni-
tive (recognition-based) energy management can enhance the performance of electric or
HVs immensely [7]. In [8], a dynamic programming-based energy management strategy
(EMS) is presented along with a general regression neural network (NN) for improving the
system efficiency of a dual-motor battery electric vehicle (BEV). In [9], authors have devel-
oped an energy management system for the minimization of the total distribution costs
of BEV batteries, which is considered along with the maximization of average utilization
of batteries. In [10], a plug-in hybrid vehicle has been optimized for better fuel efficiency
by using an adaptive and hierarchical EMS and classification based on fuzzy logic control.
In [11], an adaptive wavelet transform–fuzzy logic control EMS has been combined with
cluster analysis-based classification to divide power among the hybrid energy sources
in an optimal manner. In [12], the fuel cell lifetime of HEVs is improved by using a NN
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classification that works with a genetic-algorithm-based EMS. Similarly, [13] achieved an
improvement in the fuel efficiency of HEVs by optimizing power management using fuzzy
logic-based strategies. In [14], the authors present a fuzzy-based EMS for fuel cell vehicles
(FCV) by employing a particle swarm optimization algorithm for the better recognition of
traffic conditions.

Further, in [15], a multi-mode EMS has been achieved for a fuel cell electric vehicle
(FCEV). A Markov chain-based DPR classification has been employed for the improvement
of fuel economy. In [16], authors minimized the fuel consumption of HEVs using the Euclid
approach degree-based classification and simulated annealing-based EMS. In [17], the fuel
consumption of HEVs has been minimized by using heuristic and optimal control strategies.

Similarly, in [18], fuel consumption and emission improvements of an HEV have been
analyzed using clustering and torque division by employing classification and optimization,
respectively. Further, in [19], a DPR-based optimization technique has been presented with
a learning vector quantization classification system to improve the fuel economy of HEVs.
In the case of an EV, a prior estimate of the load can be made depending upon the driving
pattern of the driver, and information thus obtained can be used to extend the life and
range of the battery [20]. As concluded from the literature, regardless of the type of vehicle,
combining DPR with energy management may lead to significant improvements in fuel
economy, energy consumption, battery life, performance, and efficiency [21,22]. Most of
the existing literature focuses on the optimization of the energy consumption in electric
vehicles; however, achieving real-time prediction and optimization of energy consumption
is a challenging task, necessitating the need for the development of DPR-based EMS. DPR
may enable driving suggestions and the identification of traffic congestion patterns along
with suggestions of energy-efficient routes. It may also lead to the implementation of an
optimized EMS to control the vehicle speed and realize eco-driving. Minimizing the energy
consumption of an EV considering a given route and traffic situation is one of the goals of
eco-driving. However, due to several technical, computational, and operational challenges,
the realization of eco-driving becomes difficult. As decisions when driving must be made
within milliseconds, real-time-applicable DPR and EMS are required.

In the present work, real-time-applicable EMS is integrated with DPR to overcome the
challenges faced in achieving optimality in real-time scenarios. The novelty of the contribu-
tion lies in the development of the two-layer DPR, which is capable of organizing unknown
driving patterns into known representative driving patterns (RDPs) by recognizing the
patterns in terms of road and traffic conditions. Longer and shorter sampling horizons have
been chosen for road and traffic conditions, respectively. RDPs are used to represent road
and traffic conditions for a certain driving route. The characterization of real and standard
driving patterns has have been performed in terms of four features, namely average speed,
positive and negative acceleration, and number of stops. Unknown patterns are classified
into the known RDPs by employing a multi-layer perceptron neural network (MLPNN)
with six classes, namely highway high and low traffic, sub-urban high and low traffic, and
urban high and low traffic. A sequential quadratic programming (SQP)-based energy man-
agement strategy (EMS) is considered for the optimization of energy consumption of an EV.
The feasibility of DPR is verified by subjecting the classifier to an unknown mixed pattern
generated as a result of combining different standard cycles. The DPR is also evaluated for
two test route data points to evaluate the classification accuracy with changing routes and
data collection timings. The impact of road and traffic on energy consumption prediction
has been evaluated on the different test data. A comparison analysis of results has also
been performed to indicate that an EMS with DPR can lead to more energy savings.

This paper is organized as follows. In Section 2, DPR is developed for roadway type
and traffic recognition. Section 2.4 discusses EMS problem formulation using sequential
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quadratic programming (SQP). The results and discussion are presented in Section 3,
followed by the conclusion in Section 4.

2. DPR for Roadway and Traffic Type Classification
In this section, a two-layer DPR is discussed. The first step is to prepare the data by

sampling at different intervals, and labeling the sampled data. Three target classes are
defined based on roadway type and three based on traffic. The main idea is to generate
RDPs corresponding to roadways and traffic situations for a certain route. The generation
of RDPs is based on data collected along the real route and information available from
standard cycles. Finally, an MLPNN-based classifier is used to classify an unknown pattern
into the target classes.

2.1. Data Analysis and Formation of RDPs

As a first step, data are collected using an on-board diagnostic (OBD) device from a
fixed route at different times of the day for a month. The selected route is a drive over a
distance of 10.4 km. The differences in morning and evening average travel times are noted
due to variations in traffic, as shown in Figure 2.
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Figure 2. Speed data collection along a route: (a) variations in average travel time, (b) route map, and
(c) variations in driving profile.

The collected speed versus time data have been used to extract certain critical charac-
teristic features, such as average speed within a window of 100 s ( s100), average positive
and negative acceleration within a window of 10 s (a10+ and a10−), and 5 s (a5 + and a5−),
respectively, along with attributes like number of stops, time of the day, and day of the
week. For the classification of roadway type, a sampling time of 100 s is chosen to calculate
the average speed. For the classification of traffic type, within the 100 s sampling interval,
the data are further sub-sampled for intervals of 10 and 5 s.

In the next step, target classes are defined and IF-ELSE rules are formulated for the
classification of the target classes, as shown in Figure 3.
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Figure 3. Flow diagram describing different target classes.

The six target classes considered are target class 1: highway high traffic (HHT); target
class 2: highway low traffic (HLT); target class 3: suburban high traffic (SUHT); target class
4: suburban low traffic (SULT); target class 5: urban high traffic (UHT); and target class
6: urban low traffic (ULT). When sampled at 100 s, the first condition checked is that of
average speed. The comparison of a 100 s average speed with a higher ( s100

h
)

and lower
bound (s100

l ) gives an estimate about the roadway type. The next conditions which are
checked are related to the traffic condition, namely, a10+, a10−, a5+, a5− and number of
stops (#stops).

Case 1: If s100
h ≤ s100, then an estimate is made about the roadway type being a highway.

If a10
h + ≤ a10+, a10

h − ≤ a10−, a5
h+ ≤ a5+, a5

h− ≤ a5−, and #stopsl ≤ #stops, the traffic
condition is considered to be high traffic, and otherwise low traffic type.
Case 2: If s100

l ≤ s100 ≤ s100
h then the road condition is considered to be suburban. If

a10
h + ≤ a10+, a10

h − ≤ a10−, a5
h+ ≤ a5+, a5

h− ≤ a5−, and #stopsl ≤ #stops, then the traffic
condition is considered to be high traffic, and otherwise low traffic type.
Case 3: If s100 ≤ s100

l then the road condition is considered to be urban. If a10
h + ≤ a10+,

a10
h − ≤ a10−, a5

h+ ≤ a5+, a5
h− ≤ a5−, and #stopsl ≤ #stops, then the traffic condition is

considered to be high traffic, and otherwise low traffic type.

In each case, the upper and lower thresholds are defined separately by taking into
consideration the values associated with the standard cycles. Further, an analysis of four
standard driving cycles was carried out in terms of the characteristic features, and the
results are listed in Table 1. The table reveals the characteristic features of New York city
cycle (NYCC), Artemis urban, urban dynamometer driving schedule (UDDS), and highway
fuel economy test cycle (HWFET).

Based on the data collected under real driving conditions and the standard cycle
data, synthetic datasets were generated and utilized to create RDPs. RDPs represent
different driving conditions for roadway and traffic type and have been developed based
on comparisons of characteristic features of real-time driving and standard cycles. On the
basis of the characteristic features, four standard cycles were compared with the real data
points to synthesize the pattern of RDPs. The six RDPs are shown in Figure 4.
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Table 1. Characteristic features of standard drive cycles.

Characteristic Features
Different Standard Drive Cycles

NYCC Artemis Urban UDDS HWFET

Avg. Drive Speed (m/s) 4.62 6.19 10.16 21.6

No. of Stops 7 14 14 1

S.D. (σ) of Speed (m/s) 3.39 4.46 5.96 4.44

5 s Avg. Speed (m/s) 3.19 4.91 8.75 21.577

10 s Avg. Speed (m/s) 3.21 4919 8.79 21.71

100 s Avg. Speed (m/s) 3.11 4.7 8.98 21.78

1 s Avg. Acceleration (m/s2) 3.19 4.91 8.75 21.577

5 s Avg. Acceleration (m/s2) 3.21 4.919 8.79 21.71

10 s Avg. Acceleration (m/s2) 3.11 4.77 8.98 21.78
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Figure 4. RDPs for different road and traffic conditions.

2.2. Classification Employing MLPNN

The main task of classification is to identify an unknown driving cycle and translate it
into one of the known target classes. Classification was performed using MLPNN, with
specifications as given in Table 2.

Table 2. Hyperparameters of MLPNN classifier.

Hyperparameters Specifications

Input layer 10 inputs

Hidden layer 4 neurons

Output layer 6 outputs

Activation function ReLU

Loss function Cross-entropy

Learning rate Function of quadratic approximation of loss

Optimizer Gradient descent

Training data 19,922 speed data values

Train-test split 80–20%

The complete process of DPR is shown in Figure 5. After the data acquisition and
pre-processing steps, a driving cycle database was used to train the MLPNN classifier. A
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classification into the six target classes was performed with an accuracy of 97.7% [23]. The
RDP was used to select a pattern corresponding to the classified target classes. The selected
pattern was then used to compute and optimize the energy consumption of the EV.
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2.3. Energy Consumption of the EV

An EV model has been implemented in MATLAB-Simulink 2018a to analyze the
energy consumption under different identified road and traffic conditions. An EV model
consisting of vehicle dynamics, battery, and electric drive is considered with specifications
in Table 3.

Table 3. EV model specifications.

Parameter Specifications

Vehicle mass 2000 kg

Frontal area 1.6 m2

Aerodynamic drag coefficient 0.3

Rolling resistance coefficient 0.01

Wheel radius 0.28 m

Battery capacity 70 kWh

The total tractive force is given as [24]

F = ma + k1v2 + k2mg + mgsinθ (1)

where the mass is represented by m and acceleration by a. The velocity is given by v and k1

and k2 are constants. The acceleration due to gravity is given by g. The tractive power is
given as the sum of electrical losses and mechanical forces as

P = I2r + Fv. (2)
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where I represents the motor current demand and r the motor resistance. The total power
(Ptotal) is the sum of the electrical power loss, mechanical resistive losses and possible
energy gained/lost from regeneration/driving, as

Ptotal(v, a) =
rR2

K2

(
ma + k1v2 + k2mg + mgsinθ

)
+ v
(

k1v2 + k2mg + mgsinθ
)
+ mav, (3)

where K is given by KaΦd, with Ka representing the armature constant and Φd the magnetic
flux. The radius of the tire is represented by R.

The energy consumption may be calculated as

Etotal =
∫

Ptotal · dt. (4)

2.4. EMS Problem Formulation Using SQP

Determination of optimal speed trajectory for minimum energy consumption by the
vehicle is one of the targets of eco-driving. An SQP approach has been considered in this
regard [25–27], as it scores over the dynamic optimization approach with a requirement of
a lower computational burden. It is also better than the static optimization approach, as it
can incorporate non-linearities. The eco-driving problem is formulated as

f (N) = min
∫ t f

t0

Ptotal(v(t), a(t))t. (5)

where f represents the objective function, with N as the target class representing HHT,
HLT, SUHT, SULT, UHT, and ULT. The upper and lower bounds are as

v(t) ≤ v(t) ≤ v(t)

a(t) ≤ a(t) ≤ a(t).

Equations (1)–(4) can be converted to a finite-dimensional optimization problem by
using Euler’s discretization, as

minxk, uk∑k∈K
1
2

[
xk

uk

]T

Hk

[
xk

xk

]
+ FT

k

[
xk

uk

]
, (6)

xk+1 = f (xk, uk),

xk ≤ xk ≤ xk,

uk ≤ uk ≤ uk.

where k ∈ K = {0, 1, 2, . . . K − 1}, with K being the optimization horizon, u = {u0, . . . uk − 1}
being the input variables or decision variables, and x = {x0, . . . xk} being the state variables.

Here,

Hk = τ

γ0 0 γ1

0 0 0
γ1 0 γ2

, Fk =

0
0
0

, xk =

[
vk

ak

]
(7)

where τ is the step size and γ0, γ1, γ2 are non-negative model parameters.
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As Hk is not positive definite, the problem is non-convex. In order to reach a global
minimum, SQP aims to solve the non-convex or non-linear problem by sequentially solving
linearly constrained quadratic programs of (6), as{

xi+1
k ui+1

k

}
k∈K

= argminxk, uk

∑
k∈K

1
2

[
xk − xi

k
uk − ui

k

]T

Rk

[
xk − xi

k
uk − ui

k

]
+

(
Hk

[
xi

k
ui

k

]
+ Fk

)T[
xk

uk

] (8)

Subject to linear states,

xk+1 = f
(

xi
k, ui

k

)
+∇ f

(
xi

k, ui
k

)[xk − xi
k

uk − ui
k

]
(9)

such that the SQP subproblems (8) and (9) are convex and convergent. Here, Rk is added to
ensure strict convex behavior.

3. Results and Discussion
In this section, the proposed DPR-based EMS is evaluated in different stages. First,

a standard cycle comprising mixed individual known driving cycles is classified with
the DPR and the formation of the RDPs is verified. Next, test data collected from two
different routes at two different timings are used to evaluate the accuracy of the model.
The effect of increasing time frame on classification accuracy is also evaluated. As a next
step, a sensitivity analysis is conducted by varying the thresholds of speed and acceleration.
Moreover, the relative importance of features on the classification result is analyzed. Finally,
the proposed DPR with the EMS is implemented under varying driving conditions.

The simulation was performed on an Intel (R) Core (TM) system with i5-1155G7 at
2.50 GHz. The system had a 64-bit operating system, with a x64-based processor. For real-
time implementation, two options of on-board (Edge AI) or off-board processing (Cloud
AI) could be considered. Embedded GPUs (Graphics Processing Units) and higher RAM
capacities are required for advanced deep learning models with 10–15 trillion operations
per second. Cloud AI is useful in offloading heavy computations from the vehicle and is
particularly useful in the optimization of high-performing neural networks.

A mixed driving cycle is developed by combining individual standard driving cycles
to verify the accuracy of RDPs and DPR processes. A training accuracy of 97.7% is achieved
with the classification of unknown speed profiles into the known RDPs. In Figure 6, it
can be observed that the mixed cycle comprising sections from standard cycles can be
successfully classified into the respective target classes.

Next, driving data collected over two test routes during early morning and evening,
with specifications given in Table 4, are analyzed. The speed and acceleration over time
show the variations in pattern due to road and traffic conditions, as shown in Figure 7. The
positive and negative values indicate positive and negative acceleration, respectively. The
accuracy of classification for both routes at the two timings are shown in Figure 8. The
validation accuracy is slightly less than the training accuracy. The accuracy is higher for
test route 1 than test route 2, mainly due to the fact that the speed variations are higher
in test route 2. Moreover, with heavier traffic in the evening, the accuracy values are less
than those in the morning. This can be solved by considering different time horizons or
sampling intervals.
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Table 4. Specifications of data collection over test routes.

Test Routes Source Destination Distance Traveled Road Type Time of Data Collection

Test route 1 12.58532◦ N
77.4335◦ E

12.5523◦ N
77.4106◦ E 12.4 km Urban Early morning and evening

Test route 2 23.0306◦ N
88.1351◦ E

23.0962◦ N
88.0814◦ E 15.2 km Highway Early morning and evening
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The timing of data collection is essential for understanding the influence of traffic. The
labels of test route 1 during evening and early morning hours are shown in Figure 9. As
noted from the figure, the data during the evening have a higher percentage of high traffic
regions and hence more times of occurrence of UHT. The data during the morning have
more frequent occurrence of ULT.
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The sampling interval for acceleration data changed from 100 s to 10 s and then to
5 s. The corresponding values of training and validation accuracy are recorded in Table 5.
An effect of varying the time horizon of the acceleration data can be observed. For the
data from early morning, decreasing the time horizon from 100 s to 10 s led to significantly
higher accuracy, but decreasing it from 10 s to 5 s did not bring much improvement. This
is due to the fact that although analyzing shorter segments is useful in predicting traffic
conditions, too much shortening does not lead to meaningful results. For the data from the
evening, the improvement in accuracy due to a decrease in time horizon is more significant
than in the case of the morning dataset. Decreasing the time horizon to 5 s, however, brings
a slight improvement.

Table 5. Accuracy and loss over 100 s speed samples for test route 1 with varying acceleration samples.

Speed Sampling
Interval

Acceleration
Sampling Interval

Training
Accuracy Training Loss Validation

Accuracy
Validation
Loss

Data collection timing: early morning
100 s 100 s 0.7750 0.9920 0.7566 0.8190

10 s 0.9777 0.0229 0.9622 0.0239

5 s 0.9745 0.0265 0.9961 0.0260
Data collection timing: evening
100 s 100 s 0.4580 0.8997 0.5632 0.8921

10 s 0.9777 0.0452 0.9665 0.1479

5 s 0.9710 0.0322 0.9691 0.1098

As a next step, the influence of speed and acceleration thresholds on the classification
accuracy were analyzed. In Figure 10, the confusion matrix for test route 1 during the
evening session is shown. Increasing the threshold values led to more data being correctly
classified. When threshold values were increased by 5%, 167 samples were classified as
UHT and 77 as ULT, as shown in the confusion matrix. In this case, five samples were
wrongly classified as SHT, three as HLT, and four as HHT. When threshold values decreased
by 5%, 143 samples were classified as UHT and 66 as ULT. In this case, 35, 6 and 7 samples
were wrongly classified as SHT, SLT and HLT, respectively.
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as its F score value is the highest. For test route 1, positive and negative acceleration do 
not play such vital roles as in test route 2. This is because this route has higher changes in 
acceleration and deceleration values. Moreover, the number of stops has a higher occur-
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p-value indicates the relevancy of the feature for classification. Since p-values are less than 
0.05 for all features, they are all relevant in the classification process. 
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by 5%; (b) increased by 5%.

In Figure 11, the confusion matrix for test route 1 during the morning session is shown.
Increasing the threshold values led to more data being correctly classified. When threshold
values increased by 5%, 92 samples were classified as ULT and 52 as UHT. In this case, four
samples were wrongly classified as SHT and one as HLT. When threshold values decreased
by 5%, 79 and 65 samples were classified as ULT and UHT, respectively. In this case, four
samples were wrongly classified as SHT.
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The relative importance of the four features, namely speed, positive and negative
acceleration, and number of stops, was evaluated through F-score and p-value to measure
the effectiveness with which each of these features separates the different classes. As shown
in Table 6, for both routes, speed is the most determining feature for classification as its F
score value is the highest. For test route 1, positive and negative acceleration do not play
such vital roles as in test route 2. This is because this route has higher changes in acceleration
and deceleration values. Moreover, the number of stops has a higher occurrence in test
route 1 than test route 2, and hence a higher F score value in test route 1. The p-value
indicates the relevancy of the feature for classification. Since p-values are less than 0.05 for
all features, they are all relevant in the classification process.
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Table 6. F-score and p-value for the different features over the two test routes.

Test route 1
F-score p-value

Speed 612.2230 0.00145
Positive acceleration 123.9876 0.00169
Negative acceleration 97.8761 0.00213
No. of stops 12.67 0.0315
Test route 2

F-score p-value
Speed 997.2367 0.00345
Positive acceleration 432.2166 0.00193
Negative acceleration 398.1298 0.00321
No. of stops 2.11 0.0398

The energy management problem solved using SQP provides the reference speed
values for optimized energy consumption of the EV. As shown in Figure 12, with the mixed
speed profile, the classification using DPR provides information about the type of driving
and traffic situation. EMS provides reference speed values corresponding to minimum
energy consumption.

Figure 2. c) Variations in driving profile 

Figure 12. Reference speed and energy values Figure 12. Reference speed and energy values.

The energy consumption of the vehicle and the battery state of charge (SOC) are shown
in Figures 13 and 14, respectively. The energy is observed to be increasing over time and
the battery SOC has been depleted to a minimum value over time.
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Table 7 depicts the energy consumption of the six RDPs obtained through analysis of
the EV model. For the highway type of roadway, the energy consumption falls under the
range of 3.825–7.96 kWh for different road traffic conditions. Similarly, for the suburban
and urban types of roadways, the energy consumption lies in the range of 0.985–0.964 kWh
and 2.87–5.46 kWh, respectively. It can be observed that the error in the case of energy
consumption obtained under real driving conditions and as calculated by the RDPs is
relatively small.

Table 7. Energy consumption and error calculation.

RDPs Energy Consumption (kWh) Error Observed (kWh)

Highway High Traffic 3.825 5.1

Highway Low Traffic 7.96 7.2

Suburban High Traffic 0.985 0.9

Suburban Low Traffic 0.964 0.5

Urban High Traffic 5.46 3.3

Urban Low Traffic 2.87 2.7

Figure 15 depicts a comparison between the energy consumption predicted with and
without applying DPR.
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Figure 15. Energy consumption as predicted by the RDPs.

Table 8 further elaborates the optimum speed and average value of optimum energy
consumption obtained with EMS from Tables 7 and 8. It is observed that the total energy
consumption without EMS is significantly higher than optimum energy (with EMS).
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Table 8. Optimal speed and energy consumption.

Representative Pattern Optimum Speed (m/s) Optimum Energy (kWh)

Highway High Traffic 9.07 3.1356

Highway Low Traffic 23.31 4.94

Suburban High Traffic 5.171 0.565

Suburban Low Traffic 9.61 0.552

Urban High Traffic 6.996 2.94

Urban Low Traffic 11.25 1.351

Integration of DPR with EMS may lead to a significant improvement in energy sav-
ings. However, several practical challenges prevent the successful implementation of this
technology. Firstly, large datasets are required, considering multiple factors related to the
vehicle and the environment under which the vehicle is being driven, and how the vehicle
is being driven. Secondly, low-latency and lightweight solutions are required to ensure
the real-time applicability of the system. Thirdly, generalizability over multiple regions
with varying conditions requires an adaptive approach. Finally, dynamic unknown factors
related to the traffic, accidents, roadblocks, and driving habits need to be considered.

4. Conclusions
In this contribution, a two-layer DPR has been developed to classify an unknown

driving cycle into one of the predefined templates or RDPs. The DPR has been implemented
with an EV model and SQP-based optimized EMS. The predicted energy consumption has
been analyzed along with the implementation of EMS to achieve an optimal speed profile
for minimizing energy consumption. The simulation results indicate that the DPR is able to
generalize well over different routes and traffic conditions. However, training with a larger
database with data from multiple regions under varied traffic conditions can improve the
testing accuracy further. A consideration of other factors, such as weather, driving style,
unknown incidents during the drive, and charging patterns of the EV, may also provide
more insight into the applicability of the DPR. As concluded from the present work, DPR-
based EMS can provide lower energy consumption. The optimal speed profile can either
be maintained by virtue of eco-driving or provided as advice to the human driver. As part
of future work, complete control loop may be implemented to realize eco-driving. More
advanced artificial intelligence (AI) tools may be implemented to improve the accuracy of
classification. A hardware application can also be considered with on-board (edge-AI) and
off-board (cloud AI) systems.
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