e-space
Manchester Metropolitan University's Research Repository

    CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption

    Jogunola, Olamide ORCID logoORCID: https://orcid.org/0000-0002-2701-9524, Adebisi, Bamidele ORCID logoORCID: https://orcid.org/0000-0001-9071-9120, Hoang, Khoa Van, Tsado, Yakubu, Popoola, Segun I, Hammoudeh, Mohammad ORCID logoORCID: https://orcid.org/0000-0003-1058-0996 and Nawaz, Raheel ORCID logoORCID: https://orcid.org/0000-0001-9588-0052 (2022) CBLSTM-AE: A Hybrid Deep Learning Framework for Predicting Energy Consumption. Energies, 15 (3). p. 810.

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (736kB) | Preview

    Abstract

    Multisource energy data, including from distributed energy resources and its multivariate nature, necessitate the integration of robust data predictive frameworks to minimise prediction error. This work presents a hybrid deep learning framework to accurately predict the energy consumption of different building types, both commercial and domestic, spanning different countries, including Canada and the UK. Specifically, we propose architectures comprising convolutional neural network (CNN), an autoencoder (AE) with bidirectional long short-term memory (LSTM), and bidirectional LSTM BLSTM). The CNN layer extracts important features from the dataset and the AE-BLSTM and LSTM layers are used for prediction. We use the individual household electric power consumption dataset from the University of California, Irvine to compare the skillfulness of the proposed framework to the state-of-the-art frameworks. Results show performance improvement in computation time of 56% and 75.2%, and mean squared error (MSE) of 80% and 98.7% in comparison with a CNN BLSTM-based framework (EECP-CBL) and vanilla LSTM, respectively. In addition, we use various datasets from Canada and the UK to further validate the generalisation ability of the proposed framework to underfitting and overfitting, which was tested on real consumers’ smart boxes. The results show that the framework generalises well to varying data and constraints, giving an average MSE of ∼0.09 across all datasets, demonstrating its robustness to different building types, locations, weather, and load distributions.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    403Downloads
    6 month trend
    222Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record