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Abstract: Multisource energy data, including from distributed energy resources and its multivariate
nature, necessitate the integration of robust data predictive frameworks to minimise prediction
error. This work presents a hybrid deep learning framework to accurately predict the energy con-
sumption of different building types, both commercial and domestic, spanning different countries,
including Canada and the UK. Specifically, we propose architectures comprising convolutional neu-
ral network (CNN), an autoencoder (AE) with bidirectional long short-term memory (LSTM), and
bidirectional LSTM BLSTM). The CNN layer extracts important features from the dataset and the
AE-BLSTM and LSTM layers are used for prediction. We use the individual household electric power
consumption dataset from the University of California, Irvine to compare the skillfulness of the
proposed framework to the state-of-the-art frameworks. Results show performance improvement in
computation time of 56% and 75.2%, and mean squared error (MSE) of 80% and 98.7% in comparison
with a CNN BLSTM-based framework (EECP-CBL) and vanilla LSTM, respectively. In addition, we
use various datasets from Canada and the UK to further validate the generalisation ability of the
proposed framework to underfitting and overfitting, which was tested on real consumers’ smart
boxes. The results show that the framework generalises well to varying data and constraints, giving
an average MSE of ∼0.09 across all datasets, demonstrating its robustness to different building types,
locations, weather, and load distributions.

Keywords: hybrid deep learning; convolutional neural network; bidirectional long short-term
memory; energy consumption prediction; autoencoder

1. Introduction

Electric power grid patterns have been impacted by the recent COVID-19 outbreak,
where a typical weekday predicted demand now aligns with typical weekend days, as the
workforce predominantly stays, and works from, home. This resulted in a 24% measured
difference between the highest and lowest weekend energy demand in Britain [1]. This
unpredictable event has increased the volatility of the utility grid, by making demand fore-
cast a difficult task. In fact, authors in [2] show that a 1% increase in load forecasting error
can result in a ∼GBP 10 M increase in annual operating costs [3]. Moreover, the input of
several constraints, including occupant behaviours, weather conditions, price of electricity,
and comfort levels aspired, combined with the surge of distributed energy resources [4,5],
increased the complexity of accurately predicting energy consumption in balancing the
supply and demand. Furthermore, for energy service providers to offer varying ancillary
and flexible energy management services to residential and commercial buildings, accurate
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prediction of their energy consumption is an important requirement. This would result in
cost savings and a variety of choices on the customer side, and efficient grid management
on the service provider side. Other benefits include stable power supply, efficient energy
balancing, efficient energy operations, and control strategies [6].

The traditional predictive algorithm for forecasting short-, medium-, and long-term
demand consumption has certain limitations, such as overfitting, underfitting, short-term
memory, learning from scratch, and model retraining, especially with a varied and complex
dataset [7–10]. Recently, different deep learning models, such as deep neural network
(DNN), including convolutional neural network (CNN) and recurrent neural network
(RNN) [11–14], have been proposed for load forecasting. These studies show a general
improvement of deep learning models over the traditional methods. Due to the multivariate
nature of energy data involving several constraints in forecasting the load accurately,
a surge in hybrid frameworks that combine two or more DNN are reported in the literature.
For instance, Ref. [15] proposed an RNN and CNN architecture to predict the hourly and
daily consumption of commercial buildings. In addition, Ref. [3] explored different hybrid
frameworks, including LSTM/BLSTM with attention, CNN + LSTM, CNN + BLSTM, etc.,
for load forecasting.

However, as these models would be deployed on memory-constrained devices such
as smart meters and smart boxes, the computation time is an important factor that is mostly
ignored. For instance, an attention model with RNN that accounts for all hidden state
vectors as opposed to other DNN and hybrid models that only account for the preceding
hidden state is proposed in [3]. Although the attention model proves to be quite useful,
the consideration of all the hidden states would increase the computation time which
would not be suitable for lightweight and memory-constrained devices as applied to the
case in hand. Moreover, as it has been well established that environmental conditions
and occupants’ behaviour greatly impact the accuracy of load forecasting errors [16,17],
the hybrid frameworks did not examine these factors on their proposed models. Likewise,
as DNN-based predictive models could be highly unstable due to several dynamics in the
data, the proposed models in [7,18,19] only consider residential energy prediction without
ascertaining the generalisation of their model to varying datasets and dynamics.

Thus, to solve the three identified challenges above, this study proposed a hybrid deep
learning framework—CBLSTM-AE, particularly, a deep CNN and an autoencoder (AE)
with BLSTM as the encoder and LSTM as the decoder. The CNN layers extract important
features from the dataset, and the integrated AE is for feature representational learning
through the BLSTM and LSTM layers. The BLSTM uses forward and backward directions
to make a prediction, then output to an LSTM-AE layer to decode before final output to two
fully connected layers prior to the final predicted output. Secondly, several constraints that
impair the accuracy of ECPs are considered in the proposed framework. Finally, we tested
the generalisation of our framework on varying energy users to include SMEs, households,
and universities in Canada and the UK, utilising various lengths of data.

The contributions of this work is as follows:

• We proposed a hybrid deep learning architecture comprising two CNN layers and
an AE with BLSTM as the encoding layer and LSTM as the decoding layer for load
forecasting of real energy consumers.

• Peak load varies among buildings and countries, resulting in a poor generalisation of
DNN models. Thus, the generalisation ability of the framework is tested using a varied
length of datasets across households and SMEs over two different countries—the UK
and Canada.

• As energy consumption prediction (ECP) can be greatly impacted by irregular oc-
cupant behaviours, weather uncertainties ,and the nonlinearity of building dynam-
ics [20–23], the impact of these dynamics was not addressed in [7,18,19]. Thus, this
work explores the effect of weather and weekly index in the proposed framework.
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• As other authors, including [7,18], proposed hybrid deep learning but with high
computation time, our proposed architecture achieved a 56% reduced computing
time which is of importance as the algorithm is being tested on energy consumers’
memory-constrained smart boxes.

The remaining sections are organised as follows. Section 2 reviews the energy predic-
tion frameworks discussed in the literature. Section 3 presents the details of the proposed
CBLSTM-AE framework and its algorithm. Section 4 evaluates the proposed CBLSTM-AE,
while Section 5 discusses the result of the CBLSTM-AE. Finally, Section 6 concludes the
paper with future work.

2. Literature Review

In the past, ECP has been achieved using statistical machine learning (ML) methods
and an alternate ML method, as proposed in [24] utilising a cuckoo search algorithm by
means of Levy flights, to forecast electricity consumption for the organisation of petroleum
exporting countries. Some statistical ML utilised for ECP includes random forest [16],
multiple linear regression [17], gradient boosting [17], support vector regression [17,25], etc.
Although these models have their strengths in predicting energy consumption, the mul-
tivariate time series nature of ECP and the irregular trends and seasonal patterns of data
render the traditional statistical ML ineffective in accurately predicting energy consump-
tion [8,26]. On the contrary, recent research contributions seem to be adopting deep learning
frameworks for ECP. For instance, [27] used a feedforward and backpropagation neural
network with an improved version proposed in [28] using a deep extreme learning machine.
A recurrent inception CNN (RICNN) is proposed in [14] for ECP using an RNN and 1-
dimensional convolution inception module to consider the effect of the hidden state vector
values and the prediction time from closer time steps. Authors in [29] adopted a stacked
AE to extract relevant features by reducing randomness and noisy disturbance in the load
data. However, the deep learning frameworks experience difficulty in spatial–temporal
features of load data modelling [7].

Thus, recent works proposed a hybrid approach of two or more DNNs in modelling
the spatial–temporal features inherent in load forecast data. These works include LSTM
and genetic algorithm [30], LSTM and particle swarm optimisation [31], CNN and LSTM
framework [7], and CNN with BLSTM [18]. In [19], the authors proposed CNN and
multilayer BLSTM for short-term prediction, where the sequence of refined data is fed
into the CNN via the multilayer BLSTM network to learn the sequence pattern effectively
using the forward and backward direction of BLSTM. In [7,18], the CNN layer is used to
extract spatial features and the LSTM and BLSTM layers to model the temporal features
to make the ECP predictions using the individual household electric power consumption
(IHEPC) dataset [32]. The result obtained in [7] confirmed that the CNN-LSTM predicts
the local features of the time series better than the linear regression method. This achieved
better performance compared to the traditional methods, with a mean square error (MSE)
of 0.37. Likewise, the result obtained in [18] was compared to [7] and the linear regression
method, which outperformed both methods with an average MSE of 0.06 for the IHEPC
daily dataset.

Although these hybrid frameworks can predict the spatial correlation of multivariate
time series data with irregular time information of load data, their loss function, which
is the difference between the actual and predicted value, is high. Thus, a framework to
correctly predict the energy consumption data with minimal error and computation time is
needed, as an application on real smart meters is limited in the literature. The employed
frameworks and study objectives are summarised in Table 1, which also compares the
literature with this work.
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Table 1. Comparative summary of prediction frameworks for energy consumption.

Prediction Models Ref. Year Method Period Description

Statistical Models

[16] 2018 Random for-
est

Hourly,
monthly, yearly

Hourly building energy prediction using trained
RF with different parameter tuning. They also in-
vestigated the impact of behaviour changes on pre-
diction accuracy.

[17] 2017
Multiple LR,
RF, gradient
boosting

- Discussed feature filtering and ranking using dif-
ferent statistical modelling.

Machine Learning Models

[27] 2019 Neural net-
work

Short-term:
hourly, day,
weekly

Proposed a feedforward backpropagation neural
network on energy consumption data with statisti-
cal moments.

[25] 2019 SVR Hourly
A vector field-based SVR for ECP is proposed by
approximating the high nonlinearity between input
and output to linearity.

Deep Learning Models

[28] 2018
Deep extreme
learning ma-
chine

Weekly,
monthly

The authors explored deep extreme learning ma-
chine (DELM), adaptive neuro-fuzzy inference sys-
tem (ANFIS), and ANN. They proposed DELM for
ECP due to its performance over ANN and ANFIS.

[33] 2017 Pooling-
based DRNN -

Addresses overfitting forecasting performance us-
ing a pooling-based DRNN, testing their solution
on real smart meters in Ireland.

Hybrid Models

[7] 2019 CNN-LSTM Short and
medium-term

CNNs for spatial features extraction and LSTM for
temporal features modelling.

[18] 2019
CNN-
BLSTM
(EECP-CBL)

Short, medium
and long-term

CNNs for spatial features extraction and BLSTM
for features modelling for final prediction.

[14] 2019 RICNN 48 time steps,
30 min interval

Integrate RNN and 1-D convolution inception mod-
ule to calibrate hidden state vector values and pre-
diction time.

[34] 2020 AE and SOM -

Deep AE for representational learning with result
fed into an adaptive self-organizing map (SOM)
clustering algorithm, before performing a statis-
tical analysis on the obtained clustered data for
prediction.

This study 2021 CBLSTM-AE 30 min interval
and 24 h

Proposed a hybrid architecture of CNN with an AE-
BLSTM as the encoder and LSTM as the decoder to
correctly predict electricity consumption, while test-
ing the generalisation ability on various datasets in
a real environment.

3. Proposed Framework (CBLSTM-AE)

This section presents the proposed framework for ECP. The data cleaning method
to deal with missing values is first presented alongside a rolling window method for
improved performance.
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3.1. Data Cleaning and Rolling Window

The dataset is collected through the smart meters of the consumers (households and
SMEs). Sometimes, there are missing data points majorly due to network failure including
climate, measurement errors, and metering problems. Smoothing filters, including locally
estimated scatterplot smoothing (LOESS), locally weighted SS (LOWESS), robust versions of
LOESS and LOWESS (RLOESS, RLOWESS), or moving average filter [19,28] are utilised for
data cleaning. In this study, to remove noise from the data for effective forecasting/accurate
result, depending on the time resolution, we utilised the previous set of observations (day,
week, month, or year) and a moving average filter [19,35] calculated by a rolling window.

A rolling time window algorithm is utilised to increase the dexterity of the predictive
framework, where a mapping function is developed over a training set. The developed
mapping function is then used for subsequent forecasting. For instance, in (1), if x represents
a set of past data points, i.e., x = (y[t− l], · · · , y[t− l + h]), we develop a mapping function
x to y(t) over training data points, then use the developed mapping function for subsequent
forecasting. This method allows the time dynamics of data to be considered which is highly
needed in these uncertain times for accurate prediction.

y(t) = F(x) (1)

In this case, we used a rolling subset of the data for faster training as the framework will
be run on consumers’ memory-constrained devices (smart boxes). In addition, the dataset
is normalised, i.e., brought into a given data range to present the same data range for all
samples. A detailed analysis of different normalisation techniques is discussed in [8], where
the results suggested that the standard transform normalisation technique outperformed
other techniques because it scales and centres each feature of the data independently. Thus,
a standard transform normalisation technique is applied in this study.

3.2. Proposed CBLSTM-AE

The proposed ECP framework is illustrated in Figure 1. The framework consists of
multiple architectures including two CNN layers and an AE architecture made up of a
BLSTM as the encoder and a single LSTM layer as the decoder.

Figure 1. Proposed CBLSTM-AE energy prediction framework.

3.2.1. CNN

CNN is especially skillful at extracting complex features and can store varied irregular
trends. The extraction of complex features reduces the parameters needed for making pre-
dictions, thus reducing the network computations while machinating accuracy. The CNN
utilises a weight distribution concept in nonlinear problems such as ECP. CNN has hid-
den layers consisting of a pooling layer, convolution layer, and an activation function.
The convolution layer is applied to the input data to convert it into a features map. Then
the pooling layer samples the features map to extract high-level convolution features,
thereby reducing the dimension of the features map. The feature extraction of CNN and its
downsampling process reduces the computation time, making it ideally suitable for the
proposed application. In the proposed architecture, the CNN layer receives eight input
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constraint variables impacting correctly predicting energy consumption, including weather
conditions (temperature, humidity, wind speed, and dew point) and week index (weekday,
weekend, and bank holiday). These are further processed through the hidden layers to
produce an output ready for the AE architecture.

3.2.2. BLSTM-AE

The output of the CNN layer is fed into the input of the BLSTM, which also serves
as the input to the AE layer. While CNN extracts important features from the dataset,
the BLSTM-AE layer is for information analysis and sequence prediction. The vanilla LSTM
architecture is an enhanced version of RNN to overcome its vanishing gradient problem
by using memory cells and gates (input, forget, and output). The input gate determines
the input data to be reserved, the forget gate determines the data to be discarded, and
the memory cells store the processing states, while the output from the LSTM is delivered
by the output gate. However, LSTM only considers the previous state of information,
thereby losing valuable information from the next state. Thus, a BLSTM is used to combine
the information in the sequence prediction in both forward and backward directions.
AE, on the other hand, is specially designed for representation learning, to understand
unsupervised inputs in a feature vector. It consists of an encoder and a decoder to first
encode the input sequence before subsequently decoding it using internal representations.
Thus, the BLSTM-AE learns the temporal dependencies of the dataset from one sequence
to another, positively impacting the predicted output.

3.2.3. LSTM-AE

To reduce the complexity of the proposed architecture, a single LSTM is utilised at the
AE decoder as opposed to the BLSTM of the encoder. The single LSTM is also capable of
learning from temporal dependencies from one sequence to another. The encoded informa-
tion from the output of the BLSTM-AE is decoded by the single layer of LSTM-AE before
proceeding to two fully connected layers for the final predicted output. The mathematical
formulations of the proposed architecture are summarised as follows.

Given the input vectors xm
i = {x1, x2, · · · , xn}, where xm represents the varied input

vectors, including energy consumption, weather data, week index, etc., of m ∈ M, and n is
the number of normalised 30 min unit per window of observation, feeding the input vector
xi

m into the CNN layer, the resulting output is expressed in Equation (2).

ym
ij = σ(bm

j +
M

∑
m=1

w1
m,jx

0
i+m−1,j) (2)

where ym
ij resulted from the output vector xm

ij of the previous layer. bm
j is the bias for the jth

feature map, m is the index value of the filter, w is the weight of the kernel, and σ is the
activation function for the CNN. Equation (3) is the output vector for the kth convolutional
layer, in this case, the second convolutional layer in our framework.

ym(k)
ij = σ(bm(k)

j +
M

∑
m=1

wm(k)
m,j x0

i+m−1,j) (3)

The pooling layer of the convolutional layer downsamples the activation from feature
maps to reduce the number of parameters and network computation costs. The max-
pooling layer represented by (4) uses the maximum value from the previous layer for its
downsampling, which also helps in adjusting model overfitting [7].

Pm(k)
ij = max

r∈R
yk−1

i×T+rj (4)

where y represents the pooling size and T is the stride deciding the length of the input data.
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The output from the maximum pooling layer is fed to the input of the BLSTM layer
through the gate units. BLSTM consists of different gate functions (input, output, and forget
gate) in backward and forward directions, and each gate is activated when the memory
cells update their states, represented in (5) through (7).

it = σ(WpiPt + Whiht−1 + Wci · ct−1 + bi) (5)

ft = σ(Wp f Pt + Wh f ht−1 + Wc f · ct−1 + b f ) (6)

ot = σ(WpoPt + Whoht−1 + Wco · ct + bo) (7)

where σ is the activation function, b is the bias, and ct is the cell state. Pt is the output of the
max-pooling layer at time t that contains the critical energy consumption data and other
variables used as the input to the AE via the BLSTM layer. it, ft, and ot are the input, forget,
and output gate, respectively. ht is the hidden state of the BLSTM cell, which is updated
at every t step in both forward and backward directions. The hidden state and cell state
determined through the gate operation of the BLSTM is expressed in (8) and (9) for the cell
and hidden state, respectively.

ct = ft · ct−1 + it · σ(Wpc pt + Whcht−1 + bc) (8)

ht = ot · σ(ct) (9)

The output of the BLSTM layer is concatenated for both forward and backward
direction, expressed as

ȳ = σ(
←−−−−→
Wyht + by) (10)

The output of the BLSTM ȳ is fed as the input of the decoding LSTM, where the
resulting output ŷ = σ(Wyht + by) represents the input to the two fully connected dense
layers expressed in (11) for the final predicted output.

dk
i = ∑

j
wk

ji − 1(σ(ŷk−1
i ) + bk−1

i ) (11)

To sum, the CNN layer extract spatial features from the input data, and the BLSTM-AE
accepts the features from the CNN to learn temporal dependencies from between sequences
for a convincing predicted output. The proposed CBLSTM algorithm is presented in
Algorithm 1.
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Algorithm 1: CBLSTM-AE Algorithm

1 Input X
2 Output d
3 Initialise ω
4 for i = 1 ∈ n do
5 for j = 1 ∈ m do

6 calculate Pi from (4) it = σ
←−−−−−−−−→
(WpiPt +

←−−−−−−−−→
Whiht−1 + Wci · ct−1 +

←−−→
bi )

7 ft = σ
←−−−−−−−−→
(Wp f Pt +

←−−−−−−−−−−→
Wh f ht−1 + Wc f · ct−1 +

←−−→
b f )

8 ot = σ(
←−−−−−−→
WpoPt +

←−−−−−−−−−−→
Whoht−1 + Wco · ct−1 +

←−−→
bo )

9 ct = ft · ct−1 + it · σ(Wpc pt + Whcht−1 + bc)
10 h1 = o1 · σ(c1)

11 end

12 ȳ = σ(
←−−−−→
Wyh1 + by)

13 for j = 1 ∈ m do
14 it = σ(Wyi ȳt + Whiht−1 + Wci · ct−1 + bi)

15 ft = σ(Wy f ȳt + Wh f ht−1 + Wc f · ct−1 + b f )

16 ot = σ(Wpo ȳt + Whoht−1 + Wco · ct−1 + bo)
17 ct = ft · ct−1 + it · σ(Wpc pt + Whcht−1 + bc)
18 h1 = o1 · σ(c1)

19 end
20 ŷ = σ(Wyht + by)

21 d̄k
i = ∑j wk

ji − 1(σ(ŷk−1
i ) + bk−1

i )

22 end
23 d = {d̄}

4. Framework Evaluation

This section presents the experimental setup, dataset description, and evaluation
metrics for the proposed framework.

4.1. Dataset Description

To evaluate the effectiveness of our framework against the state-of-the-art, we first
used the available UCI dataset [32], before applying the framework to our dataset for
predicting the demand consumption on Q-Energy platform (Q-Energy platform is a UK-
based digital energy services provider, helping customers reduce their energy costs, carbon
footprint, and operational risk by proactively managing their energy usage, generation, and
storage of energy) To avoid repetition, a detailed description of the UCI dataset is provided
in [7,8,18]. For the Q-Energy platform, we used SMEs and household data from both
the UK and Canada. Specifically, Table 2 summarises the dataset demographics. For the
Hospital and Carehome data, the occupancy includes the bed space and the staff, while
the Restaurant includes the staff and customers at peak period. The multivariate data
consists of weather conditions (temperature, humidity, wind speed, and dew point), week
index (weekday, weekend, and bank holiday), and the actual consumption data of 30 min
resolution over different data lengths. The impact of COVID-19 increased the importance
of a week index because a typical weekday is now a weekend, as people work from home.
In addition, the effect of different lengths of data impacts the accuracy and generalisation
of the predictive framework, which is further discussed in the results section.
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Table 2. Dataset demography.

Building Name Average Demand (kWh) Data Length (Weeks) Building Type Occupancy Location

Hospital 13,306.99 144 Hospital ∼450 UK
Office 1793.16 92 SME ∼30 Canada

Restaurant 101.69 71 SME ∼60 UK
Carehome 158.44 69 Residential ∼30 UK

MMU 9071.89 260 University ∼400 UK

The UCI dataset is similar to the private dataset used in this study. Both datasets have
eight input variables and one output target, but different constraints. The UCI dataset has a
total of 2,075,269 records with 25,979 missing values which are handled in the data cleaning
step of the proposed CBLSTM-AE framework. The UCI dataset is for residential buildings
while the private datasets are for residential, SMEs, and university. We converted the time
resolution of both datasets to 24 h for short-term electricity prediction.

4.2. Experimental Setup and Evaluation Metrics

The computation to train and test the developed framework is performed on Google
Colaboratory [36] using Intel Core i7-CPU, 16 GB RAM, and 64-bit operating system. Af-
ter extensive experimentation and analysis of different parameters, the hyperparameter
values meeting the optimal performance of the proposed framework discussed in Sec-
tion 3.2 for the use case are chosen and are summarised in Table 3. After further extensive
experiments, we selected Adam optimiser, a learning rate of 0.001, 70 epoch, 160 batch-size,
0.33 validation split, and ReLU activation function. Particularly, the ReLU activation func-
tion is less sensitive to random initialisation, making it stable. ReLU’s gradient does not
saturate, and it runs great on low-precision hardware, resulting in easy computation of
its gradient.

Table 3. The proposed CBLSTM-AE and its definition.

No. Layer Type Neurons Param

1 Input 8 8
2 Convolution1D 64 1600
3 Convolution1D 64 12,352
4 MaxPooling1D 64 0
5 Bidirectional 128 66,048
6 Flatten 128 0
7 Repeat vector 128 0
8 LSTM 64 49,408
9 TimeDistributed (Dense) 32 2080

10 TimeDistributed (Dense) 1 33

We evaluated the performance of the proposed framework using MSE, mean absolute
error (MAE), root mean squared error (RMSE), and the computation time. The computation
time includes the training and testing time of the framework on the different datasets.
The MSE measures the average of the squares of the difference between the predicted and
actual values illustrated in (12):

MSE =
1
n

n

∑
1
(y− ȳ)2 (12)

where ȳ is the vector of n predictions produced from the n energy consumption dataset,
and y is the observed vector of the predicted energy consumption variables. RMSE ex-
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pressed in (13) is the standard deviation of predicted errors, i.e., the root mean square of
MSE:

RMSE =

√
1
n

n

∑
1
(y− ȳ)2 (13)

On the other hand, MAE expressed in (14) measures the absolute differences between
the predicted and the actual values:

MAE =
1
n

n

∑
1
|y− ȳ| (14)

5. Results and Discussion

In this section, an experiment to select an appropriate input value for the rolling
window is first presented. Then, a comparison against the state of the art using the UCI
dataset is first presented. Then, the generalisation of the proposed framework to a different
dataset is presented, closely followed by the performance analysis of the relationship of
different datasets length to the proposed framework.

5.1. Experiment on Rolling Window Input

Rolling window analysis of time-series data assesses the stability and forecast accuracy
of the model. In the rolling window analysis discussed in Section 3.1, the input data x
of past observation points affect the accuracy of the model. For instance, to make a
weekly prediction, the actual data of a previous observation is made available as input
into the model. This allows the model to utilise the best available data for prediction. We
performed different experiments in selecting an optimal input size for the model. This is
illustrated in Figure 2. The 30 min smart meter data for the evaluation is reprocessed to
daily data for a month forecast. To predict 4 weeks data, Figure 2 shows the experiment
results of using different an input sizes, including 7 days, 14 days, 21 days, and 28 days,
respectively. For the daily data ECP, the difference between the actual and predicted
values shown in Figure 2 for a 28-day prediction is very narrow with a good fitting for
Figure 2a,b. The accuracy of the predicted vs. actual fitting decreases as the input size
increases. In addition, the computation time increases as the window size increases.
However, utilising the defined evaluation metrics, input size of 14 achieves the lowest loss
value. Figure 3 shows an example of the training and validation loss function of the UCI
dataset for MSE and RMSE, respectively, for input size 14 which is selected to evaluate the
proposed framework.

(a) (b)

Figure 2. Cont.
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(c) (d)
Figure 2. The 28 days actual vs. predicted value for different input sizes. (a) 7 days input; (b) 14 days
input; (c) 21 days input; (d) 28 days input.

Figure 3. Training and validation loss during training.

5.2. Comparison with State-of-the-Art

To verify the effectiveness of CBLSTM-AE for ECP, Figure 4 presents the comparison
result of the proposed framework to other frameworks in the literature using the UCI
dataset for daily ECP.

The proposed CBLSTM-AE achieved the lowest MSE, RMSE, and MAE compared
to other frameworks, as illustrated in Figure 4. Specifically, the CBLSTM-AE achieved an
MSE of 80%, RMSE of 60%, and MAE of 69% performance increase to electric ECP-based
CNN and BLSTM (EECP-CBL), and an MSE of 98.7%, RMSE of 89.6%, and MAE of 88.6%
performance increase to vanilla LSTM currently being used on the Q-Energy platform.

Comparing the computation time, including training and testing time shown in
Figure 5, the proposed CBLSTM-AE achieves a 56% performance increase to EECP-CBL,
38.8% to CNN-LSTM, and a 75.2% to vanilla LSTM. The reduction in computational time is
particularly of interest because the algorithm will be deployed on IoT devices for the project.
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Figure 4. Performance comparison to other frameworks for daily data.
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Figure 5. Performance comparison to other frameworks with computation time.

5.3. Generalisation Ability of CBLSTM-AE

Training a DNN that can generalise well to new data is a continuously challenging
task due to the high volatility of the neurons [37]. A good generalisation to a different
dataset is the ability to not underfit or overfit the learning data, or increase the optimisation
time, thus leading to a better overall performance of the framework [37]. We used different
Energy-IQ project datasets across Canada and the UK, described in Section 4.1, to evaluate
the generalisation ability of the proposed framework. As the lengths of the datasets differ,
for the datasets with more than a year and less than two years’ worth of data, we used the
first year as the training set while the remaining months are used as the testing set. For a
larger dataset, we used the previous years for training and the last year for testing.

The training and validation losses for the different datasets are shown in Figure 6.
Figure 6a–d reflect the MSE and RMSE for the daily data for Hospital, Office, Restaurant,
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and Carehome, respectively. It can be observed from Figure 6 that the proposed predictive
framework generalise well to new (not previously seen) problems with different physics.
The recorded MSE is between 0.01 and 0.17 for all buildings, including the university with
an average energy consumption profile of 9071 kWh for the campus under observation.

(a) (b)

(c) (d)
Figure 6. Training and validation loss during training for different daily datasets for generalisation
performance. (a) Hospital; (b) Office; (c) Restaurant; (d) Carehome.

5.4. Performance Analysis for Different Dataset

To further ascertain the performance of CBLSTM-AE to several lengths of dataset, this
section explores the different data more closely to give more insight into their impact on
the predictive framework.

As expected, it can be observed from Figure 7 that the increase in the length of
the dataset resulted in an increase in computation time. This is especially true for the
length of data over 2 years, as seen with Hospital (144 weeks) and University (260 weeks).
Interestingly, no linear relationship is observed between the computation time and data
length for the data less than 2 years, as seen in the Office (12 s), Restaurant (15 s), and
Carehome (17 s) datasets, with computation time lower than a lengthier dataset. Similarly,
the longer the length of the dataset, as with the Hospital and the University, the lower the
measured loss, signifying more accurate prediction ability of the predictive framework.
Irrespective of the data length, the proposed CBLSTM-AE framework achieves a low
MSE loss of 0.01–0.17 and computation time of 12–33 s for the varied datasets. However,
while a short length of data resulted in low computation time and a little higher MSE loss,
compared to other test results, a trade-off of accuracy and computation time exists in these
test cases. As our focus for the project is both accuracy and computation time, on average,
two years’ worth of data is appropriate to achieve the required aim.
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Figure 7. Comparison result of different energy consumption dataset.

6. Conclusions

This work proposed CBLSTM-AE, a hybrid deep learning framework to correctly
predict the energy consumption of different building types that include commercial and
domestics in Canada and the UK. The results show increased performance with a lower
computation time of 56% and 75.2%, and a mean squared error of 80% and 98.7%, com-
pared to EECP-CBL and vanilla LSTM, respectively. The results demonstrated a good
generalisation with robustness against framework overfitting and underfitting, proving its
predictive ability over varying datasets.

On the contrary, the limitation of this study is the extensive experimentation by trial
and error in selecting the optimal hyperparameter values for the framework. We are
working on a method to automate the selection of optimal hyperparameter values. In
addition, in the UK and Canada scenario, it would have been interesting to compare the
energy consumption situation due to their different environmental conditions that impact
electricity predictions. This was not possible due to insufficient data to form a basis for
comparison. In future work, we would compare the different situations as more data
becomes available. Another identified future work is to extend the proposed framework
for price forecast in an energy market, whilst analysing the impact of integrating renewable
energy sources (solar, wind, and battery) on the energy demand and price forecast.
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