e-space
Manchester Metropolitan University's Research Repository

    A Cloud-based Deep Learning Framework for Remote Detection of Diabetic Foot Ulcers

    Cassidy, Bill ORCID logoORCID: https://orcid.org/0000-0003-3741-8120, Reeves, Neil D, Pappachan, Joseph M, Ahmad, Naseer, Haycocks, Samantha, Gillespie, David and Yap, Moi Hoon ORCID logoORCID: https://orcid.org/0000-0001-7681-4287 (2022) A Cloud-based Deep Learning Framework for Remote Detection of Diabetic Foot Ulcers. IEEE Pervasive Computing, 21 (2). pp. 78-86. ISSN 1536-1268

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (1MB) | Preview

    Abstract

    This research proposes a mobile and cloud-based framework for the automatic detection of diabetic foot ulcers and conducts an investigation of its performance. The system uses a cross-platform mobile framework which enables the deployment of mobile apps to multiple platforms using a single TypeScript code base. A deep convolutional neural network was deployed to a cloud-based platform where the mobile app could send photographs of patient's feet for inference to detect the presence of diabetic foot ulcers. The functionality and usability of the system were tested in two clinical settings: Salford Royal NHS Foundation Trust and Lancashire Teaching Hospitals NHS Foundation Trust. The benefits of the system, such as the potential use of the app by patients to identify and monitor their condition are discussed.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    91Downloads
    6 month trend
    163Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item