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FEATURE ARTICLE
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Joseph M. Pappachan, Lancashire Teaching Hospitals NHS Foundation Trust, PR2 9HT, U.K., Manchester
Metropolitan University, Manchester, M1 5GD, U.K. and also University of Manchester, Manchester, M13 9PL, U.K.
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Samantha Haycocks, Salford Royal NHS Foundation Trust, Salford, M6 8HD, U.K.

David Gillespie and Moi Hoon Yap , Manchester Metropolitan University, Manchester, M1 5GD, U.K.

This research proposes a mobile and cloud-based framework for the automatic
detection of diabetic foot ulcers and conducts an investigation of its performance.
The system uses a cross-platform mobile framework that enables the deployment of
mobile apps to multiple platforms using a single TypeScript code base. A deep
convolutional neural network was deployed to a cloud-based platform where the
mobile app could send photographs of patient’s feet for inference to detect the
presence of diabetic foot ulcers. The functionality and usability of the system were
tested in two clinical settings: Salford Royal NHS Foundation Trust and Lancashire
Teaching Hospitals NHS Foundation Trust. The benefits of the system, such as the
potential use of the app by patients to identify and monitor their condition, are
discussed.

Diabetes mellitus is a chronic metabolic disor-
der, and a growing world-wide epidemic.1

Diabetic foot ulcers (DFU) are wounds devel-
oped on the feet that represent serious complications
resulting from diabetes, and are prone to high recur-
rence and infection.2 There are numerous potential
contributing factors to the development of DFU, with
diagnosis, monitoring, and treatment programs requir-
ing multidisciplinary medical expertise. Feet of dia-
betic patients are more susceptible to injury and
chronic wounds, resulting in skin damage and ulti-
mately the development of a DFU.3

Patients with an active DFU or at high risk of devel-
oping a DFU require frequent foot checks by health-
care professionals and referral to specialists to prevent
additional severe complications. DFU can result in

serious lifestyle repercussions, resulting in immobility,
social stigma, social isolation, increased mortality, and
significant costs to healthcare systems, with hospitali-
zation constituting the most expensive part of treat-
ment.4 More than half of DFUs become infected, with
approximately 20% of moderate or severe DFU infec-
tions leading to lower extremity amputation.5

The cost of healthcare in England for DFU and
amputation in 2014–2015 is estimated at £1 billion,
approximately 1% of the entire National Health Service
(NHS) budget.6 The lower bound of DFU and associ-
ated amputation cost estimates is higher than the
combined NHS expenditure in England on breast,
prostate, and lung cancers.7 In the United States, the
direct costs of treating DFU exceed the treatment
costs of many common cancers.5

Given the significant and growing impact of DFU,
mobile health solutions that target this condition
could assist in improving patient quality of life. Up to
80% of DFU are thought to be preventable through
early detection.8 Promotion of patient self-care and
continuous monitoring for those most at risk, increas-
ing rates of early intervention to reduce the severity
and impact of DFU, could provide significant cost
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savings for healthcare systems. Self-management pro-
grams have been found to improve health outcomes,
with mobile technologies identified as an important
factor in delivering self-management interventions
that are adaptable, of low cost, and easily accessible.9

Due to the continued significant increase in
reported global cases of diabetes and DFU, research
in this area has also seen notable growth. As a result,
the use of deep learning algorithms for automated
analysis of DFU has become more prominent, particu-
larly from our group in recent years.10–13 Goyal et al.
created and validated deep convolutional neural net-
works (CNNs) capable of DFU classification,10 seman-
tic segmentation,11 and localization.12 These models
show high levels of sensitivity, specificity, and mean
average precision (mAP) in experimental settings.

This article proposes a cloud-based deep learning
framework for remote detection of DFUs. To address
the above-mentioned issues, our framework includes
the following:

› a cross-platform mobile app used for capturing
photographs of DFU (a noncontact solution)
capable of sending diagnosis requests to a cloud
service;

› a cloud-platform that mobile clients can connect
to, capable of inference using one or more CNNs
to provide a diagnosis.

To assess the usability and reliability of such a sys-
tem, we completed a proof-of-concept clinical evalua-
tion using mobile and cloud technologies at two U.K.
sites: Salford Royal NHS Foundation Trust and Lanca-
shire Teaching Hospitals NHS Foundation Trust. We
recruited six clinicians across both sites to participate
in the evaluation, all with more than 5 years of profes-
sional experience in podiatry, consisting of a surgeon,
consultants, and diabetic foot nurses. Prior to starting
the evaluation, we obtained ethical approval from Sal-
ford Royal NHS Foundation Trust (REF: S19HRANA37)
and Lancashire Teaching Hospitals NHS Foundation
Trust (REF: SE-281). Written and signed consent
was obtained from all patients who participated in the
study.

CURRENT STATE OF THE ART
In recent years, infrared thermographic devices have
been proposed,8,14 which have shown promising results
when used with deep learning models to predict and
monitor DFUs. However, such devices are relatively
expensive when compared to the cheapest smart-
phones, reducing affordability in poorer countries.

Petrova et al.15 found that monthly intervention with
thermography did not show a significant reduction in
ulcer recurrence rates or increased ulcer-free survival.
Chan et al.16 validated an artificial intelligence-enabled
wound imaging mobile app to measure DFUs. However,
this systemwas not fully automated, resulting in inaccu-
rate detection of wound boundaries requiring manual
adjustment, which would be unsuitable for home use.
None of the current solutions are capable of accurate
DFU detection using only commercial smartphones.
An app that can be run on low-end devices could have a
significant impact in poorer regions where regular
access tomedical experts is limited.

WHY CLOUD?
The unprecedented growth of the global smartphone
market over the last decade has been mirrored by the
more recent emergence of enterprise cloud com-
puting platforms (CCPs). CCPs provide on-demand
computing, storage, and software accessible over
the Internet, allowing for the remote offloading of pro-
cess-intensive tasks.

A clear advantage of CCPs is that they allow users to
gain access to significant processing power, well
beyond the means of existing mobile devices. This
allows for patients to use even very dated mobile hard-
ware to access the latest advances in automated medi-
cal image analysis. This means that continual advances
in this field are not tied to the computing capability of
mobile devices, as such devices are simply consuming
services from CCPs. In addition, scalability becomes
easier to manage, given the virtualized nature of cloud
services. There is a growing trend in the use of ensemble
CNNs in medical image analysis, whereby multiple
CNNs are used to form a final prediction.17 Distributing
mobile apps that use multiple models is not practical
given the limited permissible size of apps when distrib-
uted via online app stores. There is also the issue of
intellectual property protection. Android apps are par-
ticularly easy to reverse engineer, so having CNNs run
on the server instead of the user’s mobile device means
that trainedmodels are never publicly exposed.

SYSTEM ARCHITECTURE
The two major components created for the evaluation
were 1) a cross-platform mobile app and 2) a cloud-
based deep learning framework that performed infer-
ence on foot photographs sent from mobile clients.
A cross-platform framework was chosen for the devel-
opment of the mobile client since the ultimate goal of
this research is to provide patients with a means of
remotely monitoring and diagnosing DFUs using their
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own smartphones, comprising primarily of Android
or iOS devices. An overview of the system physical
architecture is shown in Figure 1. The following sec-
tions describe how these components were utilized in
the creation of our proposed framework.

Mobile App
Cross-platform development can reduce time and
costs associated with developing apps for multiple
mobile platforms. The mobile app developed for our
evaluation was created using Ionic, a cross-platform
framework using TypeScript. Screens within Ionic
apps are rendered onto a WebView, in the same way
that web browsers render web pages. There are also
native elements within the framework, including
the ability to interface with hardware components
such as sensors and cameras. Figure 2 shows the
main screens within the mobile app.

The primary objective of our evaluationwas to deter-
mine the usability and reliability of our cross-platform
mobile client and cloud-based framework in real-world
settings. Ease of use was a primary motivating factor
behind the design of the mobile app. Screens within the
app show a context-sensitive information bar, used for
guiding the user through the process of acquiring and
uploading foot photographs. The user interface and vali-
dation were designed to minimize the possibility of
incorrect user actions. Examples of this include the abil-
ity to only upload a photograph if it had not yet been

uploaded, together with the locking of the left/right foot
tickbox controls when the corresponding photograph
had been uploaded. Ionic utilizes amodel–view–control-
ler architecture, implemented using Angular.js, which
separates data, data presentation, and business logic.
App data, including application state, are stored in a
local SQLite database.

Oracle Mobile Cloud Service Software-
Development Kit (SDK)
Oracle provides an SDK for several mobile development
frameworks, including Ionic, which enables mobile cli-
ents to interface with Oracle Mobile Hub (OMH). The
Oracle Mobile Cloud Service SDK is a HyperText Trans-
fer Protocol Secure client layer, through which requests
can be made to OMH and associated services using
JavaScript Object Notation via Representational State
Transfer (REST) to transfer data between clients and
the cloud service.

Cloud Platform
The cloud platform services developed for our evalua-
tion were implemented using Oracle Cloud Infrastruc-
ture (OCI). OCI is an online enterprise scale cloud
service offering Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service.
A breakdown of these service models is described in
the following sections.

FIGURE 1. Overview of the physical architecture showing the major structural components used in the implementation.
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FIGURE 2. Screenshots from the cross-platform mobile client. From left to right: (top-left) scan patient QR code, (top-middle) cli-

nician enters details of foot, (top-right) clinician enters number of visible ulcers, (bottom-left) photo acquisition of foot, (bottom-

middle) cloud service inference results, and (bottom-right) examination complete.
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Platform as a Service
OMH and the autonomous transaction processing
instance (ATPI) represent the PaaS elements used in the
evaluation. OMH provides a gateway for mobile clients
to access other internal cloud services, and includes fea-
tures such as identity management, analytics, and appli-
cation programming interfacemanagement.

The ATPI hosts the Oracle 18c database, which is
used for storing all data relating to the evaluation,
including foot details entered by clinicians, photo-
graphs taken during patient appointments, inference
results returned from the model, and clinician con-
firmation of agreement with inference results. ATPI
offers multiple deployment options that automatically
configure the database depending on its targeted use
case. For our evaluation, we used the autonomous
transaction processing workload type, which opti-
mizes the database with a bias toward processing
high volumes of random data access.

Infrastructure as a Service
Oracle Compute represents the IaaS component of
the project, consisting of a virtual machine (VM). Virtu-
alization software allows multiple systems to run on a
single physical platform, where isolated environments
can be created by multiplexing host computing cycles
and virtualizing hardware resources. The VM hosts the
core of the business logic, together with the frozen
inference graph used for inference. For our evaluation,
the operating system used was Ubuntu 16.04.6 LTS
(xenial) with Nvidia GPU cloud machine image shape,
which defines the hardware configurations that are
available to the VM instance. Hardware available on
this shape included an Intel Xeon Gold 5120 2.20 GHz
CPU, and an Nvidia Tesla P100 SXM2 16 GB GPU. We
created two Python programs to run on the VM, which
were responsible for processing network, database,
and image inference operations.

The first of the two Python programs, ServerPy,
handle incoming requests from mobile clients via
OMH over REST. All incoming requests are handled by
Flask—a web framework that allows for REST requests
to be routed to Python methods. Requests are made
to add, update, or retrieve data from the database.
Adding data to the database includes adding new
patient foot data, foot photographs, and clinician
agreement confirmation with inference results. Send-
ing data from the database to requesting clients takes
the form of server status codes, app version checks to
ensure that the user is using the correct version of the
mobile app, and the results of completed inference
requests. When new photographs are received by
ServerPy, the details are added to a jobs table in the

ATPI database. The second Python program, Annota-
tePy, periodically reads the jobs table and retrieves
the oldest incomplete job. The job is then processed,
using TensorFlow for inference, after which the results
are added to the database and the job is marked as
complete. This process operates as a queue, using a
first-in first-out principle.

Deep Learning Framework
The DFU localization model trained by Goyal et al.12 was
selected for use during our evaluation. This single cla-
ssifier model showed the highest mAP (91.8) in a
comparison of supervised deep learning models trained
and evaluated with DFU. The model was trained using
1775 DFU images, with ground truth labeling provided
by clinical diabetic foot experts at Lancashire Teach-
ing Hospitals NHS Foundation Trust. It implements
Faster R-CNN as the object localization network to
process feature extraction, with Inception-ResNetV2
used to classify the extracted feature maps. This
model was trained using two-tier (partial and full)
transfer learning using the MS COCO dataset, and
implements the following three distinct steps to per-
form localization:

1) feature extraction using Inception V2, used as
input for later stages (proposals and classifier);

2) generation of proposals and refinement;
3) region of interest classifier and bounding box

regressor to fine-tune bounding box accuracy.

The model was trained using a heterogeneous
dataset comprising nonstandardized DFU images.
Aspects such as orientation, distance from foot, cap-
ture device type, resolution, focal length, exposure
time, ISO speed ratings, variances in the amount of
the foot visible in the image, and lighting conditions
resulted in a high level of variability in image charac-
teristics. It could be argued that a nonstandardized
dataset is more desirable in the training of such a
model, since this would increase the viability of its use
in real-world settings where a system would need to
be able to take into account numerous uncontrolled
environment variables.

FINDINGS
During the evaluation, clinicians were asked to state
within the app if they agreed with the detection
results returned by the localization model. A total of
203 foot photographs (henceforth cases) were
acquired from a total of 81 patients. The total number
of DFUs detected by the system with a confidence
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score of �0.8 was 198. Clinicians recorded agreement
with 178 cases and disagreement with 25 cases,
resulting in an agreement rate of 87.69%. There were
13 cases where more than one DFU was present.
Clinicians were only able to indicate agreement or dis-
agreement on a per-case basis rather than individual
predictions. For this reason, we intend on conduct-
ing an inter-rater analysis based on individual detec-
tion results, which we will report on in a later paper.
The mean response time for the system (which
includes the full round-trip from mobile request to
cloud inference and response) was 5.866 seconds,
with a standard deviation of 0.747 seconds. This
indicates that there was a consistent response time
to inference requests from mobile clients during the
evaluation.

Usability is a key factor in the adoption of mobile
health apps, especially where users are not within the
typical age range of mobile device users.18 Therefore,
at the end of our evaluation, users of the system were
asked to complete a usability questionnaire. The Uni-
versity of Pittsburgh (PITT) Usability Questionnaire
(Standalone Mobile Health App for Health Care Pro-
viders template) was shown to have high internal con-
sistency reliability,19 and was selected for use in our
evaluation to obtain qualitative and quantitative
measures. Questions 9, 15, and 18 were excluded as
they were considered nonrelevant to the use of the
app in its current prototype form. A free-text section
was included for clinicians to provide details of their
experience and recommendations when using the
app. Six participating clinicians completed the ques-
tionnaire, with questions scored between 1 and 7; 1
being disagree and 7 being agree. They were also able
to select a not applicable option if they believed that a
statement was not relevant.

Quantitative Analysis
Table 1 shows a summary of mean and standard devia-
tion for the ratings of each question. The question-
naire results indicate that all participating clinicians
report high levels of satisfaction when using the app,
with most of the mean scores being above 5, of a max-
imum score of 7. Questions 1 (m = 6.50; sd = 0.55) and
2 (m = 6.83; sd = 0.41), which relate to ease of use,
provide the highest scores, which we regard as a good
indicator that the app would be easy for patients to
use in home settings, and meets one of the main crite-
ria when taking into account the design of the app.
The lowest scoring questions were Question 5 (m =
4.75; sd = 2.22) and Question 10 (m = 4.80;
sd = 2.28), which related to how the app responds to
user mistakes and expected app functionality, respec-
tively. This would indicate that the app design might
benefit from further adjustments to enable users to
more easily correct their mistakes. However, these
issues would be negated in a patient-focused app
since it would not contain any of the data entry
elements currently present in the clinician-focused
prototype.

Qualitative Analysis
The free-text responses provided by participating clini-
cians showed varying results that were not obvious to
gauge from the answers to the Likert scale questions.
Most participating clinicians agreed that the app was
easy to use and functioned as expected. However,
some clinicians experienced connectivity issues with
the app due to the restrictive nature of free hospital
Wi-Fi, which resulted in occasionally slow upload of
foot photographs. Such restrictions may mean that
connected devices are automatically disconnected

TABLE 1. Summary of results for individual question responses, reported in mean � SD (standard deviation).

Question mean�SD

Q1 The app was easy to use 6.50�0.55

Q2 It was easy for me to learn to use the app 6.83�0.41

Q3 The navigation was consistent when moving between screens 5.83�0.98

Q4 The interface of the app allowed me to use all the functions offered by the app 6.00�0.89

Q5 Whenever I made a mistake using the app, I could recover easily and quickly 4.75�2.22

Q6 I like the interface of the app 5.83�0.98

Q7 The information in the app was well organized, so I could easily find the information I needed 6.00�1.27

Q8 The app adequately acknowledged and provided information to let me know the progress of my action 5.00�2.35

Q9 Overall, I am satisfied with this app 6.00�1.27

Q10 This app has all the functions and capabilities I expected it to have 4.80�2.28

6 IEEE Pervasive Computing 2022

FEATURE ARTICLE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

after a period of inactivity, with the only way to recon-
nect being via the device’s web browser, a process
that has to be completed manually by the user.

Clinicians also agreed that the localization results
were generally highly accurate. Other responses noted
the number of false positive detections, with clinicians
indicating that they would occur on callouses or
extravasation areas around the wound. However, one
response noted that extravasations detected as
ulcers would at least direct patients to the clinic for
assessment. One response noted that the app would
be less useful for clinicians in its current state as they
knew how to recognize the presence of an ulcer. Other
responses disagreed with this statement, highlighting
the importance of regular photographic capture of
DFUs for screening and remote serial analysis. A
device that allows patients to self-screen at home
could encourage diabetic patients to check their feet
more regularly, and would enable clinicians to check
patients’ feet without the need for hospital visits. It
was also noted that older patients might have diffi-
culty using the app without assistance. This could be
addressed with the help of a partner, family member,
or care giver. Another solution would be to use a
selfie-stick attachment with the mobile device to
enable the patient to use the app while seated.

We observe that the lowest scoring questions from
the questionnaire were Q5 and Q10. Although not
explicitly stated by clinician feedback, this may be
related to an inability to easily cancel a current in-
progress examination. Although we provided this fea-
ture, implemented by pressing the device back button,
and informed participating clinicians prior to the eval-
uation, we did not reinforce this information within
the app itself. Therefore, it may benefit the design of
the app by including a button that allows users to
quickly and easily cancel a current examination at any
point during the procedure.

For the lowest scoring question (Q5), no relevant
feedback was provided by participating clinicians.
For the second lowest scoring question (Q10), possible
reasons given include the lack of other wound assess-
ment methods, such as measurement and depth, and
the ability to check for hot spots on the foot.

RECOMMENDATIONS AND
FUTUREWORK

The agreement rate obtained from the per-case
results is promising; however, we note that the model
used during the evaluation was trained on a small
number of examples (< 2000). Since the model was
originally trained, we have continued to collect DFU

images and labels from our clinical partners, and will
continue to refine the model for future work.

The ability to take multiple photographs of a single
foot during an examination might also benefit app
usability. This feature could be used when it is not pos-
sible to capture all DFUs on a single foot in one photo-
graph. However, this feature would need to be
carefully balanced so as not to add unnecessary com-
plexity, which would be especially pertinent in a
patient-focused app.

Our framework has been designed to encourage
frequent patient self-monitoring, supporting early
detection of DFU that will lead to earlier signposting
to treatment and improved ulcer healing. Early inter-
vention is an important factor in improving healing
rates. Tools and education programs to give patients
the knowledge and motivation to manage their condi-
tion are essential in reducing the negative effects of
diabetes and DFU.20

Many people diagnosed with DFU are older adults;
therefore, it will be important to ensure that any future
apps created for use with our framework are simple
and easy to use. They should require minimum input
from the user, and results should be presented in a
form that is easy to understand. Usability will be the
primary defining objective for a patient-focused ver-
sion of the app. Minimal complexity will ensure the
greatest adoption and impact of the system.

During the analysis phase of the project, we
explored the possibility of using a serverless solution,
whereby the setup of a VM to host the Python applica-
tions could be bypassed. Instead, packages would be
uploaded to a server space where application meth-
ods could be triggered by events received via REST
requests. However, this approach to cloud computing
is still in the early stages, with most providers not
exposing access to GPU resources using this method.

Following the positive results in user acceptance
from our evaluation, we plan for a larger scale study to
be undertaken. This follow-up study will be patient-
focused, where the app will be simplified and distrib-
uted to a larger number of users. In this study, the app
will be used by patients, their friends, family, or care
givers. This next stage will provide confirmation of
whether the app and associated technologies are suit-
able for large-scale real-world use. The technologies
developed will form the basis of a platform to support
future research into areas such as the following:

› early detection of DFU, including signs of
preulceration;

› classification and segmentation of DFU types,
including infection and ischemia;
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› segmentation of tissue types determined by
color and texture features, including necrotic,
epithelial, granulation, and slough;

› noncontact methods of monitoring DFU healing
status over time.

CONCLUSION
In this article, we developed a cross-platform mobile
app and a cloud-based deep learning framework for
the automatic detection of DFU. The system was
assessed for usability via qualitative and quantitative
methods, which showed that the system scored highly
for system usability when used by clinicians in clinical
settings. This article will provide the basis for a more
extensive patient-focused evaluation of the system to
determine its effectiveness when used by patients
and their care givers. The dataset obtained over the
six-month evaluation period will be used to retrain the
existing model to improve its ability to detect DFU at
various stages of development. The longitudinal data
will be used to further refine the model to detect the
early signs of DFU.

To the best of our knowledge, the framework cre-
ated for this research is the first of its kind, where DFU
can be automatically detected and localized by a fully
integrated framework of state-of-the-art technologies
with an easy-to-use app, producing high confidence
scores, where inference is performed in the cloud. This
could lead to the eventual expansion of our system for
use as a tool, not just for patients to self-monitor, but
also as an assisting diagnosis and monitoring tool for
medical experts.
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