e-space
Manchester Metropolitan University's Research Repository

Interact Calculation in a Quantum Annealing Optimization Process

Syrchas, A and Crispin, AJ (2016) Interact Calculation in a Quantum Annealing Optimization Process. [Patent]

[img]
Restricted to Repository staff only

Download (1MB)
[img]
Preview

Download (63kB) | Preview

Abstract

A method for applying a quantum annealing optimisation process for identifying a candidate schedule. The method comprises generating, by a process optimization computing device, a set of P schedules; applying, by the process optimization computing device, a quantum annealing optimisation process by recursively updating the set of P schedules; and identifying, by the process optimization computing device, a candidate schedule from the recursively updated set of P schedules. For each of the recursively updated set of P schedules, an alternative schedule is generated, by the process optimization computing device, and is compared, by the process optimization computing device, to the each of the recursively updated set of P schedules based on a comparison of a quantum term for the each of the recursively updated set of P schedules and of a corresponding quantum term for the alternative schedule, wherein a quantum term is calculated using an interaction function configured to output an interaction value Q for two schedules S1 and S2 of the recursively updated set of P schedules;. The using, by the process optimization computing device, the interaction function to output the interaction value Q for the schedules S1 and S2 further comprises: receiving as an input a binary encoding E1 for the first schedule S1 and a binary encoding E2 for the second schedule S2, wherein the binary encodings E1 and E2 include a same number of bits; initialising the interaction value Q to zero; setting a value of N to a value of one or more; setting a binary variable A as the first N bits of the binary encoding E1 and setting a binary variable B as the first N bits of the binary encoding E2; updating the interaction value Q based on a Hamming weight calculation for a binary variable derived from an XOR operation applied to the binary variables A and B; as long as the binary encoding E1 comprises one or more M bits after the binary value A and the binary encoding E2 comprises one or more M bits after the binary variable B, re-setting the binary variable A as being the first L bits of the one or more M bits of the binary encoding E1, with L ¤M, re-setting the binary variable B as being the first L bits of the one or more M bits of the binary encoding E2 and repeating the updating; and outputting the interaction value Q for the schedules S1 and S2.

Impact and Reach

Statistics

Downloads
Activity Overview
10Downloads
187Hits

Additional statistics for this dataset are available via IRStats2.

Actions (login required)

View Item View Item