e-space
Manchester Metropolitan University's Research Repository

    Response of small sea ice floes in regular waves: A comparison of numerical and experimental results

    Bai, W, Zhang, T and McGovern, DJ (2017) Response of small sea ice floes in regular waves: A comparison of numerical and experimental results. Ocean Engineering, 129. pp. 495-506. ISSN 0029-8018

    [img]
    Preview

    Available under License In Copyright.

    Download (1MB) | Preview

    Abstract

    In severe seas ice floes can gain significant kinetic energy presenting a hazard to offshore structures and shipping. A numerical investigation is presented to investigate the kinematic response of sea ice floes in waves. The results are compared against available experimental data. The surge, heave and drift velocity are analyzed for various different ice floe shapes using the potential flow model HydroSTAR® and the viscous flow CFD model OpenFOAM®. The results show relative wavelength (λ normalized with floe length Lc) λ/Lc strongly influences heave and surge, with a heave resonance occurring at λ/Lc=8 for the cubic floe not being correspondingly observed for the square floe. The heave Response Amplitude Operator (RAO) is found to increase with floe thickness with a resonance occurring when relative thickness b/Lc≥0.5. Shape is observed to be less important than thickness. At small values of λ/Lc the floe is observed to move forward over the whole wavelength resulting in its drift displacement. Both vertical velocity relative to theoretical particle velocity Vy/Vp and ratio of forward and backward velocities show resonance at λ/Lc=8. Comparing with experimental data, the linear analysis using HydroSTAR® overestimates the heave and surge RAOs. OpenFOAM®, however, appears to provide a much better agreement with the experimental data indicating viscosity plays an important role in floe kinematics.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    426Downloads
    6 month trend
    404Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record