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Abstract 13 

 14 

In severe seas ice floes can gain significant kinetic energy presenting a hazard to offshore structures and shipping.  A numerical 15 

investigation is presented to investigate the kinematic response of sea ice floes in waves. The results are compared against 16 

available experimental data. The surge, heave and drift velocity are analysed for various different ice floe shapes using the 17 

potential flow model HydroSTAR® and the viscous flow CFD model OpenFOAM®. The results show relative wavelength (λ 18 

normalised with floe length Lc) λ/Lc strongly influences heave and surge, with a heave resonance occurring at λ/Lc = 8 for the 19 

cubic floe not being correspondingly observed for the square floe.  The heave Response Amplitude Operator (RAO) is found to 20 

increase with floe thickness with a resonance occurring when relative thickness b/Lc ≥ 0.5. Shape is observed to be less 21 

important than thickness. At small values of λ/Lc the floe is observed to move forward over the whole wavelength resulting in 22 

its drift displacement. Both vertical velocity relative to theoretical particle velocity Vy/Vp and ratio of forward and backward 23 

velocities show resonance at λ/Lc = 8. Comparing with experimental data, the linear analysis using HydroSTAR® overestimates 24 

the heave and surge RAOs. OpenFOAM®, however, appears to provide a much better agreement with the experimental data 25 

indicating viscosity plays an important role in floe kinematics. 26 
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 30 

1. Introduction 31 

 32 

The trend in the decline of Arctic sea ice is predicted to lead to an ice-free Arctic Ocean by 2040 (ACIA, 33 

2004). Such seasonal reduction in sea ice coverage may open the North West Passage and Northern Sea 34 

Routes to shipping, greatly reducing the journey time between the Pacific and Atlantic Oceans. Additionally, 35 

according to a USGS (United States Geological Survey) survey between 13 and 30% of the world’s 36 

untapped oil and gas are thought to be located beneath the Arctic Ocean (USGS, 2008). The reduction in ice 37 

coverage is cause for increased interest in exploiting these reserves.  38 

The Arctic is a particularly harsh environment and hazards to offshore and shipping operations include 39 

that of sea ice interactions (Thompson and Rogers, 2014). The loss of ice coverage will increase fetch and, in 40 

low concentrations, such as stretches of ocean adjacent to but not within the Marginal Ice Zone (MIZ), 41 

motions of a sea ice floe (floating ice block which is not attached to land) that is small with respect the 42 

dominant wavelength (λ) will be driven by ocean waves and become significant in severe seas. The analysis 43 

of the problem is similar to that of a thin, free-floating body, and a detailed review is given in McGovern and 44 

Bai (2014a). In the case of small fragments of sea ice, i.e., up to tens of meters in size and much smaller than 45 

the dominant wavelengths, the floe is essentially non-compliant (Meylan and Squire, 1994, 1996, McGovern 46 

and Bai, 2014a). In such a case flexural response of the floe is negligible and radiation damping is dominant. 47 

The floes may still cover a large region of many kilometres in length, but will be found in all different sizes 48 

down to small floes. Such small floes even in the MIZ are sensitive to full six degrees of freedom of motions 49 

from wave forcings (Frankenstein et al., 2001). Indeed such motions have been measured in the field on 50 

isolated glacial ice bergs of a variety of sizes (Wadhams et al., 1983). Understanding the kinematic response 51 

of a small ice floe in wave is, therefore, key to properly addressing the potential hazard that such a floe may 52 

have to offshore operations and shipping in the Arctic.  53 

Due to its significance in cold regions engineering practice, there has been extensive research on drift 54 

motions of small ice floes. Initially, researchers focused more on the derivation of theoretical or semi-55 

theoretical models to solve the simplified ice problems. For example, Rumer et al. (1979) extended the 56 

Morison’s equation to calculate the drift motion of small floating object in a gravity wave field. Shen and 57 

Ackley (1991) used a one-dimensional model to study collisions between ice floes and herding using the 58 
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slope-sliding model proposed in Rumer et al. (1979).  Shen and Zhong (2001) found that wave reflection has 59 

a profound effect on the drift pattern. Even for a very small reflection coefficient, the floating object can stop 60 

its propagation after some time. This trapping phenomenon depends on the added mass and drag coefficients.  61 

Marchenko (1999) independently derived a similar slope-sliding theory as in Rumer et al. (1979). 62 

Grotamaack & Meylan (2006) related the two theories in Marchenko (1999), Shen and Zhong (2001) and 63 

identified an error in the derivation of Rumer et al. (1979). Recently, Huang et al. (2016) presented an 64 

improved analytical solution to the drift of small rigid floating objects of arbitrary shapes under regular 65 

waves. 66 

Apart from the two comprehensive reviews in Squire et al. (1995) and Squire (2007) where a large 67 

amount of research on the interaction of sea ice and ocean waves in the MIZ have been summarised, many 68 

experiments and theoretical studies have been carried out to study the response of small floating objects in 69 

waves. Arunachalam et al. (1987) analyzed the short term motion of icebergs in linear waves both 70 

theoretically and experimentally. Lever et al. (1988a, 1988b) and Huang et al. (2011) studied different 71 

factors which can affect the motion and drift velocity of small icebergs experimentally. However, it can be 72 

seen that most attention has focused on glacial icebergs, which are now well understood. Attention, 73 

including the works of Meylan and Squire (1994, 1996) and Meylan (2002), has focused on the flexural 74 

response of thin floating bodies in waves. Of interest here is how the compliant properties of the floes affect 75 

floe kinematic and reflection response. 76 

More recently, Montiel et al. (2013a, 2013b) presented measurements of the oscillatory motions of thin 77 

plastic disk in regular waves, and compared the measurements with predictions of the potential flow model. 78 

Bennetts and Williams (2015) presented measured surge, heave and pitch motions of a solitary wooden disk 79 

at a subset of the incident wave frequencies and amplitudes used for their tests. Their model was based on a 80 

combined potential flow and thin plate theory, and the assumption of linear motions. Both a low-81 

concentration array in which discs were separated by approximately one disc diameter in equilibrium, and a 82 

high-concentration array in which adjacent discs were almost touching in equilibrium, were considered in 83 

their experiments. Meylan et al. (2015a) presented measurements of the surge, heave and pitch motions of a 84 

thin plastic disk as a function of λ. They showed that the model predictions in their study are accurate for 85 

incident λ approximately greater than two times floe diameter. Meylan et al. (2015b) tested the motions of 86 
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two different plate models with distinct material properties in regular waves by using the thin plate model. 87 

The results indicated that the motions of floes are essentially linear. 88 

In order to further understand kinematics of ice floes in water waves, McGovern and Bai (2014a) 89 

conducted an experiment in a wave flume to investigate in detail the kinematic and dynamic response of ice 90 

floes, their drift velocity, the influence of body geometry, thickness and other parameters. They concluded 91 

that the ice floe’s motion can be affected by its own properties such as shape and thickness and also the wave 92 

properties such as wavelength. Additional discussion on ice floe interaction and impact characteristics with a 93 

single fixed vertical cylinder was given in McGovern and Bai (2014b). They studied the effect of a single 94 

cylinder on the upstream, near-cylinder, impact and post impact kinematics and velocities of floes of various 95 

shapes in a variety of wave conditions. This paper is, therefore, the follow-up of our previous work on ice 96 

floe kinematics. As the experimental data presented in McGovern and Bai (2014a) was not sufficiently 97 

validated due to the lack of published data in the public domain, one aim of the present paper is to reproduce 98 

the physical experiment numerically, so that the accuracy of both our experiment and the present numerical 99 

study in the kinematics of ice floes can be firmly verified by the comprehensive comparison between the 100 

numerical and experimental results. Also, different numerical tools are compared and recommendations are 101 

made. 102 

However, the literature review shows that CFD work on the kinematics of ice floes in water waves is very 103 

rare. Therefore, identifying a suitable numerical tool for the ice floe problem is another aim of the present 104 

paper. Two different numerical tools are chosen to carry out the numerical simulation: the linear analysis 105 

based on the potential flow theory by the software HydroSTAR® and the computational fluid dynamic (CFD) 106 

simulation based on the viscous flow theory by the open source tool OpenFOAM®. OpenFOAM®, with the 107 

advantage of being free and open source, has been adopted to solve many problems in coastal and offshore 108 

engineering. In the study of Higuera et al. (2013), the OpenFOAM® was adopted to simulate several coastal 109 

processes such as wave breaking and wave interaction with obstacle. Chen et al (2014) also used this CFD 110 

tool to study wave interaction with a vertical cylinder. Both of these two studies indicated that the 111 

OpenFOAM® is accurate and promising. After testing three validation cases, Morgan et al. (2010, 2011) 112 

concluded that OpenFOAM® may potentially be a very useful tool for researchers and engineers in coastal 113 

and offshore engineering. To simulate water waves, Jacobsen et al. (2012) extended OpenFOAM® with a 114 

wave generation and absorption method. Furthermore, Higuera et al. (2013a, 2013b) implemented the 115 
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specific boundary conditions for realistic wave generations and presented a robust three-dimensional, two-116 

phase numerical model for practical applications in coastal engineering. 117 

 118 

2. Experimental study 119 

 120 

2.1 Experiment setup 121 

 122 

The experimental set-up is described in detail in McGovern and Bai (2014a) and as such, is given here in 123 

brief. The flume used is the 32 m long 2 m wide wave flume situated in the Hydraulic Engineering 124 

Laboratory at the National University of Singapore. An effective absorption beach was located at the end of 125 

the flume. Extensive testing during the construction of the flume showed that the beach reflects < 5% of 126 

incident wave height, and this was confirmed by additional testing before the current experimental campaign 127 

in McGovern and Bai (2014a). Sea ice models of various shapes are formed from paraffin wax (density ρ = 128 

890 kg m-3). The kinematic response of the models in regular waves is measured using a PhaseSpace Improv 129 

motion tracking system, see Fig. 1a. This system tracks the full six-degrees-of-freedom of motion of the floe 130 

models in the test section. Free surface elevation is recorded using four resistance-type wave gauges up and 131 

downstream of the test section (Fig. 1b). The system consisted of 8 cameras mounted on a frame around the 132 

test section supported by the flume walls. The cameras are able to resolve the LED to 0.1mm at a distance of 133 

5m. The LEDs were positioned at equidistant points from each corner of the ice model. The system was 134 

calibrated using a calibration wand on which LEDs are fixed at known distance apart. The accuracy of the 135 

system is rated at 1% of the distance between the cameras and the measured LED (see McGovern and Bai, 136 

2014a for more details). 137 

 138 

 139 

Fig. 1 a) Image of a floe model with attached LED lights undergoing testing in regular waves and b) a schematic diagram of 140 

the flume. 141 

 142 

2.2 Data processing 143 

 144 
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Raw data obtained in the experiments is the time series record of displacement in the x and y directions. 145 

The solid line in Fig. 2 shows the raw data of x displacement, which cannot be used directly for the analysis 146 

of surge motion due to the presence of the drift motion. According to the engineering practice, the surge 147 

motion refers to the periodically oscillating component in the x displacement. Therefore, to obtain the surge 148 

motion the effect of drift motion should be separated from the time series record. It should be noted that due 149 

to the different processing procedure, the surge motion defined in McGovern and Bai (2014a) is slightly 150 

different to the conventional definition of surge motion widely adopted in engineering practice, since the 151 

drift motion is not completely removed from the results of surge motion. Here, to be in line with the 152 

conventional definition of surge motion, the mean value of x displacement at each time instant is calculated 153 

by averaging the displacement around this time instant over one wave period. The oscillating surge motion is 154 

eventually obtained by removing the mean at each time instant from the measured signal. By using this 155 

processing procedure, the oscillating component can be separated from the motion in the x direction, as 156 

shown by the dashed line in Fig. 2, which can be defined as the surge motion of moving body. The same 157 

approach will also be adopted in the following sections to process the numerical results. 158 

 159 

 160 

Fig. 2 An example of x displacement trace in experiment and corresponding surge motion after processing  161 

 162 

In addition, since the large drift motion is a specific phenomenon associated with ice floes in waves, the 163 

drift velocity is a key physical property that is of great engineering significance when studying ice impact 164 

problems (Huang et al. 2011). Generally, the constant drift velocity in the quasi-steady state can be 165 

computed by two approaches (Huang et al. 2011). One is to obtain the instantaneous mean velocity within 166 

one wave period based on an up-crossing method that is widely used in analyzing irregular waves. In this 167 

method, the period-averaged mean drift velocity is a function of time, and can be calculated by dividing the 168 

horizontal displacement between two neighboring peaks by the wave period. The other method is to 169 

calculate the mean drift velocity in the quasi-steady stage by determining the slope of a best-fitting linear 170 

trend line, which is adopted in this study. For the purpose of demonstration, Fig. 3 shows the x displacement 171 

trace for a typical case in the experiment, and the corresponding best-fitting linear trend line from 15s to 35s 172 

marked by a thick solid line. The information regarding the performance of the approach is also shown in a 173 
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small table embedded in the figure. The drift velocity Vd can be easily determined by calculating the slope of 174 

the best-fitting line. In the case shown in the figure, the drift velocity Vd is 0.05947m/s. 175 

 176 

 177 

Fig. 3 An illustration of determination of drift velocity Vd using the best-fitting linear line approach. 178 

 179 

3. Linear numerical analysis 180 

 181 

There exist various numerical models ranging from the simplified linear potential flow model to the more 182 

complete computational fluid dynamic simulations, which are available for the numerical simulation of 183 

response of ice floes in water waves. However, each numerical model has its own advantages and 184 

disadvantages due to various assumptions made and inherent natures of the model. In this study, we mainly 185 

focus on two popular numerical models, and evaluate the performance of these two models. 186 

 187 

3.1 Linear diffraction/radiation method 188 

 189 

The fluid is assumed to be incompressible and inviscid, and the motion irrotational. The water wave 190 

problem can be formulated in terms of a velocity potential (x, y, z, t), which satisfies Laplace’s equation 191 

within the fluid domain surrounding the ice floe (Chen et al. 2015), 192 

2 0  ,  (1) 193 

and is subject to the boundary conditions applied on the ice floe surfaces given as: 194 

n
n





V ,  (2) 195 

where n is the normal unit vector pointing out of the fluid domain, and Vn the normal velocity component of 196 

the solid surfaces. On the water surface, the first order boundary condition is 197 

2

2
0g

t z

  
 

 
,  (3) 198 

where g is the acceleration due to gravity. In addition, a suitable radiation condition on the outer boundary 199 

should be imposed to avoid the wave reflection from the far-field boundary.  200 
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This boundary value problem has been successfully solved in many widely used commercial software 201 

packages. In this study, the software package HydroSTAR® is adopted, which provides a complete solution 202 

of the first order problem of wave diffraction and radiation. The main output includes the wave forces and 203 

moments, wave elevation and dynamic response of floating bodies. As for the problem of ice floes in water 204 

waves investigated in the present study, this linear analysis tool is applied to simulate a cube of length 20cm, 205 

and a square plate of length 30cm and thickness 5cm, in order to examine the capability of the linear analysis 206 

for this thin ice floe problem. The assumption of kLc = O(1) is applicable for the potential flow model, where 207 

k is the wave number and Lc is the typical body length. After the mesh convergence test, the numbers of 208 

panels in the x, y and z directions are chosen to be 8, 8 and 8 for the cube in the calculation, while the 209 

numbers of panels for the square plate are 18, 18 and 6. Due to the symmetry of the computational domain, 210 

only a quarter of the body is considered in the calculation, so that there are in total 80 and 189 panels on the 211 

cube and square plate surfaces, respectively.  212 

 213 

3.2 Numerical results and discussions 214 

 215 

Our experimental results reveal that ice floe kinematics can be affected by incident wave height H and 216 

wavelength λ. However, in the linear analysis RAO (Response Amplitude Operator) of bodies is independent 217 

with incident wave height. We, therefore, can only study the influence of wavelength on the dynamic 218 

response of ice floes in waves. To make a direct comparison with our experiments, the wavelength is varied 219 

from 1.0m to 3.0m for the cube and from 0.6m to 3.0m for the square plate, as in the experiments. The linear 220 

analysis can directly provide the surge and heave RAOs, where the effect of drift is excluded. The numerical 221 

results are compared with the experimental data measured at the wave steepness H/λ of 0.02 for the cube and 222 

0.044 for the square plate, as shown in Fig. 4 and Fig. 5 respectively. From the comparison of surge and 223 

heave RAOs of the cube as a function of relative wavelength λ/Lc, it can be seen that the surge RAO is in 224 

acceptable agreement, but the numerical simulation over-predicts the heave response by four times that of 225 

the experimental measurement at the peak frequency around λ/Lc = 7 - 9. Here, Lc is defined as the length of 226 

the edge in horizontal plane for the square plate and the length of the edge for the cube respectively. For the 227 

square plate in Fig. 5, the numerical results reveal that the linear analysis seems to over-predict both the 228 

surge and heave RAOs. An unreasonable peak appears in both the surge and heave RAOs at about λ/Lc = 3, 229 
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whose value exceeds 1. Therefore, in the regime where λ/Lc is between 2 to 4, the linear analysis can be 230 

considered to provide inaccurate results for the square plate considered here. 231 

 232 

 233 

Fig. 4 Comparison of surge (a) and heave (b) RAOs of cube between the linear analysis and experiment 234 

 235 

Fig. 5 Comparison of surge (a) and heave (b) RAOs of square plate between the linear analysis and experiment 236 

 237 

Generally speaking, although with the similar trend, the linear analysis by HydroSTAR® is not able to 238 

provide good agreement with the experimental results, especially in the resonance range for the heave 239 

motion of the cube. The over-prediction of the numerical simulation is mainly due to the neglection of fluid 240 

viscosity in the potential flow model, which is verified later in Figs. 9 and 10 by the numerical results 241 

obtained using the viscous flow solver OpenFOAM® where the viscosity of fluid is considered. It is 242 

unsurprising that the results obtained by the linear potential flow analysis cannot agree with the experimental 243 

results well, as it is known that this theory is only valid for certain range of body size relative to wavelength. 244 

The only damping in the potential flow model is due to radiation damping, while as in the experimental case, 245 

viscous damping appears to play a more significant role in accurately predicting the dynamic responses. In 246 

addition to the assumptions made in the potential flow model, the linearization might be another source of 247 

error in the linear analysis. At the same time, as the commercial software HydroSTAR® can only provide the 248 

results in the frequency domain, which means the information about the displacement trace and the drift 249 

velocity that are the significant physical properties when studying ice floes in water waves, is missing. The 250 

advantage of the linear analysis is efficiency; the simulation can finish in a very short period of time. For a 251 

particular case, full RAO can be obtained on a normal workstation in 10 minutes when 500 wave frequencies 252 

are considered. However, to obtain more accurate numerical results with detailed information, a 253 

computational fluid dynamic simulation with the nonlinearity and fluid viscosity being taken into account is 254 

necessary. 255 

 256 

4. Computational fluid dynamic (CFD) simulation 257 

 258 
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4.1 Mathematical formulation 259 

 260 

The governing equations for viscous flows are the Reynolds averaged Navier-Stokes equations (Ferziger 261 

and Peric, 2012) within the domain surrounding the ice floe: 262 

  0j

j

u
t x




 
 

 
,  (4) 263 

    j i
i j i e i

j i j i j

u up
u u u g

t x x x x x
   

      
       

         

, (5) 264 

where xj (j = 1, 2, 3) represents the coordinate components, uj is the fluid velocity, p is the pressure, ρ is the 265 

fluid density. μe = μ + μf , where μ is the fluid viscosity and μf  is the turbulent eddy viscosity. In order to 266 

close the above governing equations, the two-equation k-ε turbulence model is adopted to simulate the 267 

turbulent flows: 268 

    f

j k

j j k j

k
k u k P

t x x x


   



     
      

      

, (6) 269 

   
2

1 2

f

j k

j j j

u C P C
t x x x k k

   
    



     
      

      

, (7) 270 

j i i
k f

i j j

u u u
P

x x x


   
  

    

,  (8) 271 

where μf  = Cμρk2/ε, k is the turbulent kinetic energy, ε is the turbulent energy dissipation rate, δk and δε are 272 

the turbulent Schmidt numbers. The constants in the turbulence model are set as Cμ = 0.09, C1  = 1.44, C2 = 273 

1.92, δk = 1.0 and δε = 1.33. 274 

Volume of Fluid method (VOF) (Hirt and Nichols, 1981) is adopted to capture the air-water interface (the 275 

free water surface). In this method, the fraction of water volume existing in each computational element 276 

(known as the volume fraction) is advected by solving the following transport equation: 277 

  0j

j

u
t x




 
 

 
,  (9) 278 

where α is the volume fraction of water. The volume fraction is used as the weighting factor to predict the 279 

fluid properties in each computational element,  280 
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 1w a      ,  (10) 281 

 1w a      ,  (11) 282 

where the subscripts w and a represent the corresponding fluid property of water and air respectively. It 283 

should be noted that on the body surface, the non-slip boundary condition is applied.  284 

 285 

4.2 Numerical implementation of OpenFOAM® 286 

 287 

The CFD calculations are carried out using an open source CFD software, OpenFOAM® (Open Source 288 

Field Operation and Manipulation) which was first released in 2004. OpenFOAM® is essentially a C++ 289 

library that is used to create solvers for various fluid flow problems. OpenFOAM® comes with a great 290 

number of solvers but its open source nature can also enable users write their own solvers. Jacobsen et al. 291 

(2012) developed a solver, called Waves2Foam, to deal with the wave generation and wave-structure 292 

interaction problems. While this solver doesn’t include the dynamic mesh utility in OpenFOAM® and as a 293 

result cannot deal with floating bodies. In the present study, Waves2Foam is coupled with the dynamic mesh 294 

function embedded in another OpenFOAM® solver, called WaveDyMFoam, such that the moving body 295 

problems can be solved in the frame of Waves2Foam. 296 

Three different types of floes are considered in the CFD calculations using OpenFOAM®: the first two are 297 

the cube and square plate that have been defined before in the linear analysis, and the last geometry is a 298 

regular triangle plate of length 30cm and thickness 5cm. The present study mainly investigates the effect of 299 

wavelength on ice floe kinematics, by varying the wavelength from about 0.6m to 3.0m for all these three 300 

geometries. In the simulation of the cube, the wave steepness is set to H/λ = 0.02, as used in the experiments. 301 

However, the wave steepness H/λ remains to be 0.044 for both the square and triangle plates, which was also 302 

adopted in the experiments for the same geometries. Various wave heights are also tested for the square plate 303 

with the same wavelength to study the influence on the drift velocity. The effect of ice floe thickness is also 304 

studied by a series tests for the square plate. Therefore, in total 54 test cases are run using OpenFOAM®. 305 

In the numerical simulations, BlockMesh, a mesh type in OpenFOAM® which is very suitable for regular 306 

geometries, is used to discretize the computational domain for the cube and square plate, where the total 307 

numbers of elements are 400,000 and 432,000 respectively. For the triangle plate, because of the relatively 308 
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irregular shape of the body SnappyHexMesh, another mesh type in OpenFOAM® which is more robust for 309 

irregular geometries, is used and 571,802 elements are adopted in the simulations. It should be noted that a 310 

coarser mesh of 200,000 elements and a finer mesh of 800,000 elements have also been tested for the cube to 311 

validate the feature of mesh convergence (not shown here). The calculations at those three meshes reveal that 312 

the intermediate mesh of 400,000 elements and the finer mesh can provide very agreeable results that deviate 313 

from those obtained at the coarser mesh, indicating that the results presented below at the adopted mesh is 314 

convergent in terms of computational mesh. In addition, non-uniform mesh is used for all the three 315 

geometries with suitable mesh refinement around the free surface and body surface. With 400,000 elements, 316 

one simulation for a duration of 30s and a particular λ/Lc takes about 3 to 4 hours in OpenFOAM® using 8 317 

computer processors. In this study, our main focus is on the global dynamic motion of bodies in waves, 318 

rather than the detailed turbulent flow structures. Therefore, no special consideration has been given to the 319 

treatment of flow boundary layer. In Fig. 6, an example mesh is shown for a floating square plate generated 320 

in OpenFOAM®. Table 1 shows the wave properties and model shapes of simulations in OpenFOAM®. 321 

 322 

 323 

Fig. 6 The example mesh in OpenFOAM® for ice floe problem 324 

 325 

Table 1 Summary of OpenFOAM® simulations 326 

 327 

 328 

5. CFD and experimental Results 329 

 330 

5.1 Time series of response 331 

 332 

Time series of body response is a direct output in both the numerical simulation and experimental 333 

measurement. Fig. 7 shows the displacements in the x and y directions and the comparison between the 334 

numerical results and experimental data for the square plate over five wave periods after the steady state has 335 

been achieved. The steady state means both the surge and heave motions become periodic with constant 336 

amplitudes and the drift component becomes a fixed value in each wave period. In this case, the wavelength 337 
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λ = 3m and wave height H = 0.132m are considered. As shown in the figure, the ice floe experiences a 338 

periodic motion around the free surface in the y direction, whereas a clear drift can be observed although it 339 

also moves forwards and backwards periodically in the x direction. The comparison between the numerical 340 

results and experimental data shows that good agreement can be obtained for the surge and heave motions. 341 

To better demonstrate the body motion, the trajectory of the square plate moving in waves is shown in Fig. 8, 342 

from which we can see that the trajectory exhibits like a helix line rather than a closed line. The x 343 

displacement is periodic, but also involves a drifting component.  344 

 345 

 346 

Fig. 7 Numerical and experimental results of time series of x (a) and y (b) displacements for the square plate 347 

 348 

Fig. 8 Numerical result of trajectory of the square plate in waves 349 

 350 

5.2 Effect of wavelength 351 

 352 

In the tests of Lever et al. (1988a) for the iceberg motions, it was concluded that wavelength λ is a 353 

significant factor to influence the iceberg motions. In their experiments, four model geometries were adopted 354 

to study the effect of geometry on dynamic responses of icebergs. For a particular geometry, the influence of 355 

wavelength on body motions was also investigated. The results demonstrated that cylinder and cube models 356 

show a peak in the heave RAO at λ/ Lc = 6 and then tend to be around 1 at larger λ/Lc, while the sphere and 357 

trapezoid show no peak. In this study, we first present our numerical and experimental results of surge and 358 

heave RAOs for the cube and compare with the experimental data in Lever et al. (1988a), as shown in Fig. 9, 359 

to validate both our numerical model and experiment. For the 20cm cubic model, in McGovern and Bai 360 

(2014a) the test case was repeated for 6 times at each wave condition. The error bars of the experimental 361 

data are shown in Fig. 9, from which we can see that the errors of the experiments are small (less than 8%). 362 

We can also see from the figure that the surge and heave RAOs show different trend with the increase of 363 

relative wavelength λ/Lc for the cube. The surge RAO shows a constant increase with the wavelength, and 364 

after λ/Lc = 10 it approaches to 1, indicating the particle-like behavior of the ice floe. A peak appears in the 365 

heave RAO at around λ/Lc = 8; the heave motion decreases and tends to approach to 1 while increasing the 366 
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wavelength so that the cube behaves like a water particle, in both the numerical, present and Lever et al.’s 367 

experimental results. Schwerdtfeger (1980) used a rectangular iceberg and assumed the motion only in the 368 

vertical cross-section. The frequencies of both linear and angular oscillations of a floating iceberg in the 369 

vertical plane were shown to converge to a certain value with the increase of body size in the horizontal 370 

plane. It was found that the heave resonance of an iceberg with straight sides can be easily computed by 371 

assuming linear oscillations: 372 

 2 1i
c

res w

m
h





 
  

 
,  (12) 373 

where h is the thickness of the iceberg, mc is the added mass coefficient in heave, ρi and ρw are the densities 374 

of ice and water respectively. The added mass coefficient for the cube in this case can be determined 375 

approximately by the formula ma = 0.7ρa3, as shown in Levins and Plunkett (1980). With this added mass 376 

coefficient, Eq. (12) shows that the heave resonance occurs at λ/Lc = 9.7 for the ice cube, which agrees with 377 

the numerical and experimental results shown in Fig. 9. This probably can also explain the lack of resonance 378 

in the heave for the square plate, as shown later. Eq. (12), at the same time, demonstrates that the thickness 379 

of the ice might be another important parameter, which will be further discussed later in detail. 380 

 381 

 382 

Fig. 9 Comparison of surge (a) and heave (b) RAOs of the cube between the present numerical and experimental results, 383 

and the experimental data in Lever et al. (1988a) 384 

 385 

Further observation of Fig. 9 reveals that the numerical result of surge motion is slightly different from 386 

the present experimental data, but closer to the data in Lever et al. (1988a). On the other hand, the heave 387 

motion in the numerical simulation experiences a larger peak compared to the experimental results, which 388 

may be due to the other damping influences (such as the surface roughness of the ice floe and the tank walls) 389 

in the experiments that cannot be taken into account in the numerical simulations. However, in general the 390 

present numerical simulation is able to provide accurate surge and heave RAOs, and the present 391 

experimental results are also in good agreement with numerical and Lever et al.’s experimental results. 392 

Fig. 10 shows the surge and heave RAOs of the square plate in the present numerical simulation and 393 

physical experiment both with the wave steepness of H/λ = 0.044. As seen in the figure, it is distinguishable 394 
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from the cube case that there is no obvious peak observed in the heave RAO, but the surge RAO shows the 395 

similar characteristics with the cube case. It seems that the thickness of ice floe can affect the occurrence of 396 

the resonance phenomenon in the heave motion, which will be further discussed later. A small discrepancy 397 

can still be observed for λ/Lc <3 in both heave and surge RAOs, which may be attributed to the small wave 398 

height (about 2 cm) adopted in both the numerical and experimental studies. The wave height is small in 399 

order to retain a constant wave steepness for these short waves. This may cause errors in both the 400 

experiments and numerical simulations. 401 

 402 

 403 

Fig. 10 Comparison of surge (a) and heave (b) RAOs of the square plate between the present numerical and experimental 404 

results 405 

 406 

Furthermore, with considering the over-prediction and unrealistic peak in the linear analysis, as shown in 407 

Figs. 4 and 5, the CFD simulations can obtain much better results than the linear analysis, which is reflected 408 

by the better agreement with the experimental data, especially for the cube case. As discussed before, the 409 

over-prediction in the linear analysis is due to the linear nature and the omission of the fluid viscosity in the 410 

basic assumptions of the linear potential flow model. Therefore, compared to the CFD simulation, the linear 411 

analysis may not be very suitable in accurately modeling the motion of floating ice floes, even though it is 412 

very efficient in computer time.  413 

 414 

At the same time, the physical experiment also observes the phenomenon of green water appeared when 415 

λ/Lc < 5 for the square plate. Green water is a quantity of water on the topside surface of body as a result of 416 

wave actions. The same green water is also noticed in the numerical simulations, whereas the critical value 417 

for the occurrence of this phenomenon is found to be around λ/Lc = 4. Fig. 11 shows the test cases with and 418 

without the green water observed at λ/Lc = 4 and λ/Lc = 10 respectively for the square plate at the wave 419 

steepness H/λ = 0.044. This green water effect may be one of the reasons for smaller surge and heave 420 

motions at smaller wavelengths. This phenomenon agrees with the findings in Skene et al (2015), where a 421 

theoretical model of overwash of a floating plate was presented and validated by laboratory experiments. 422 

They also showed that overwash generally occurs for waves with relatively short lengths. For the cases with 423 
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λ/Lc < 4, the relative error of the numerical simulation is larger and the reason has been discussed. For the 424 

cases with λ/Lc > 4, the relative error is less than 10% which means that the numerical results are reliable. 425 

 426 

 427 

Fig. 11 The 3D free surface profile around the square plate for λ/Lc = 4 (a) with green water and λ/Lc = 10 (b) without green 428 

water 429 

 430 

5.3 Effect of model shape 431 

 432 

In the physical experiments, a series of ice floes with different shapes have been tested. In the CFD 433 

simulations, three model shapes are chosen to test the hydrodynamic performance of different bodies. For the 434 

influence of other body shapes, see McGovern and Bai (2014) for more details. The three body shapes 435 

chosen include the cube, square plate and triangle plate with streamline normal to one edge of the triangle. 436 

Fig. 12 shows the surge and heave RAOs of different body shapes obtained by both the numerical 437 

simulations and experiments. As seen in the figure, the surge motion presents an increasing trend with the 438 

increase of wavelength for all the three body shapes, and the numerical results are in good agreement with 439 

the experimental results. While for the heave RAO, results for different body shapes show great difference. 440 

For the cube, both the numerical and experimental results show a peak approximately at λ/Lc = 8, where the 441 

heave response can reach more than two times that of the wave height H. For the square and triangle plates, 442 

there is no obvious heave resonance. Generally, for all the three body shapes, the numerical results show the 443 

same trend with the experimental data. However, the numerical results seem to underestimate the heave 444 

RAO for both the square and triangle plates when the wavelength is small. For the cases with λ/Lc < 4，the 445 

relative errors of heave RAOs are relatively large especially for the cube and square plate. While for the 446 

cases with λ/Lc > 4, the relative errors of all the three models are less than 10% except for the cube with λ/Lc 447 

= 8. As for surge RAO, also the cube model shows the largest relative errors while the errors of all the three 448 

models are in a reasonable range. 449 

 450 

 451 
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Fig. 12 Comparison of surge (a) and heave (b) RAOs of three different body shapes between the present numerical and 452 

experimental results 453 

 454 

5.4 Ice floe velocity 455 

 456 

The velocity of ice floe is an important parameter when calculating ice impact force on structures by using 457 

the Morison equation (Wong and Sego, 1989). In the numerical simulation, the velocity of floating body can 458 

be exported directly, while in the physical experiment the velocity can be calculated from the time series of 459 

body displacement. Fig. 13 shows a comparison of time series of velocities in the x and y directions between 460 

the numerical and experimental results for the square plate with the wavelength λ = 3m and wave height H = 461 

0.132m. It can be seen that the x velocity in the positive x direction is obviously larger than that in the 462 

negative direction, which indicates the occurrence of the body drift in the x direction. For the heave velocity, 463 

the maximum upward and downward velocities are approximately the same. When the steady state is 464 

reached, the maximum x and y velocities of the square plate predicted by the numerical simulation agree 465 

reasonably well with the experimental results. 466 

 467 

 468 

Fig. 13 Time series of x (a) and y (b) velocities obtained by both the numerical simulation and experiment for the square 469 

plate with λ = 3m and H = 0.132m 470 

 471 

Fig. 14 shows the x and y velocities, Vx and Vy, of the cube normalized by the corresponding theoretical 472 

water particle velocity Vp as a function of the relative wavelength λ/Lc. Here, Vx and Vy refer to the maximum 473 

velocities in the x and y directions respectively, and Vp is defined as: 474 
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As shown in the figure, the horizontal relative velocity Vx/Vp varies around 1 but shows no specific trend. 477 

The vertical relative velocity Vy/Vp demonstrates the same trend as in the heave RAO with a resonance 478 
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happened at approximately λ/Lc = 8. As for comparison, the numerical results agree with the experimental 479 

results well in Vy/Vp. However, Vx/Vp is smaller than the experimental results but with a similar trend. 480 

Furthermore, with the increase of λ/Lc the ratio of the horizontal positive and negative velocities is also 481 

shown in Fig. 15. As can be seen in the figure, the general trends of the numerical simulation and experiment 482 

are the same. The ratio shows a peak at λ/Lc = 8 and with the increase of λ/Lc, the ratio approaches an 483 

asymptotic value of 1.5. 484 

 485 

 486 

Fig. 14 Comparison of numerical and experimental results of x (a) and y (b) velocities normalized by the theoretical water 487 

particle velocity for the cube 488 

 489 

Fig. 15 Comparison of numerical and experimental results of the ratio of horizontal positive and negative velocities for the 490 

cube as a function of relative wavelength 491 

 492 

For the cube, there is always a horizontal negative velocity at all the relative wavelengths investigated, 493 

which indicates that the cube moves forwards and backwards. However, for the square plate, the physical 494 

experiment shows that the horizontal negative velocity does not appear at small wavelengths when λ/Lc < 5.3. 495 

In this situation, the floe keeps moving forwards all the time without any backward motion. The same 496 

phenomenon is also observed in the present numerical simulation when λ/Lc < 4. This is because drift 497 

velocity becomes dominant when λ/Lc is small. Fig. 16 shows the numerical results of surge displacement for 498 

the square plate at λ/Lc = 2 and 5. With constant wave steepness, the larger wavelength implies that a higher 499 

wave was used in the simulation. Without the obvious backward velocity, the floe moves even faster at λ/Lc 500 

= 2 with a smaller wave height compared to that at λ/Lc = 5. This indicates that the drift velocity Vd does not 501 

necessarily increase with the wave height, but is affected more by the relative wavelength. 502 

 503 

 504 

Fig. 16 Numerical result of displacement in the x direction for the square plate at λ/Lc = 2 and 5 505 

 506 
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To visualize the velocity in the domain, Fig. 17 shows the velocity field around the cube with the relative 507 

wavelength λ/Lc = 13 and wave height H = 0.052m at two time instants. In Fig. 17(a), the wave crest passes 508 

the cube at t = 10.3s, while the wave trough passes the cube at t = 10.9s in Fig. 17(b). When the wave crest 509 

passes, the velocity of most water particles around the body is pointing upwards and forwards so that the 510 

body also moves in that direction. However, when the wave trough passes, the velocity of most particles 511 

around the body is in the opposite direction, the body therefore moves downwards and backwards. 512 

 513 

 514 

Figure. 17 Velocity field around the cube with λ/Lc = 13 and H = 0.052m at two time instants:  (a) t = 10.3s and (b) t = 10.9s 515 

 516 

5.5 Drift velocity  517 

For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when 518 

following a specific fluid parcel as it travels with the fluid flow.  In the Lagrangian description, fluid parcels 519 

may drift far from their initial positions. The equation of the drift velocity is given as follow: 520 

2 2 cosh 2 ( )

sinh 2
d

ga k k h z

kh
V




 ,   (15) 521 

where a is the wave amplitude, ω is wave frequency.  522 

According to Eq. (15), we can see that the solution is a quadratic function of the ka number. In the present 523 

study, the wavelength is constant at λ = 1.8m and the wave height is varied in order to achieve the desired 524 

range of ka numbers. Fig. 18 shows the numerical results of drift velocity for the square plate normalized by 525 

the wave celerity C as a function of ka number, together with the experimental results of both the present 526 

study for the same square plate and Huang et al. (2011) for the square plate of length 20cm and thickness 527 

4.5cm. The drift velocity obtained by the Stokes wave theory is also included in the figure for clearer 528 

demonstration. Both the numerical and experimental results are slightly larger than the theoretical results as 529 

shown in Fig. 18 while they are generally in good agreement. 530 

 531 

 532 

Fig. 18 Numerical result of drift velocity for the square plate and comparison with the experimental results of both the 533 

present study and Huang et al. (2011) 534 

https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Fluid_flow
https://en.wikipedia.org/wiki/Lagrangian_and_Eulerian_coordinates
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 535 

5.6 Effect of thickness 536 

 537 

The present experimental data has shown that the floe thickness b has a dramatic effect on floe motions, 538 

especially in the heave direction. Fig. 19 shows the numerical and experimental results of heave RAO for the 539 

square plate with two different thicknesses, b = 5cm and b = 7.5cm. With increasing of λ/Lc, the heave RAO 540 

in both the numerical and experimental results seems to approach the value of 1. The floe with larger 541 

thickness has a larger heave response. The experimental results of the square plate with larger thickness also 542 

demonstrate that a heave resonance appears, although it is not very obvious. The numerical results seem to 543 

follow the same trend as the experimental data, but underestimate the heave RAO, as seen before. The 544 

square plate with thickness larger than 7.5cm is not further investigated in the experiment, as the aim of the 545 

experiment is to study the motion of sea ice floes with small thicknesses.  546 

 547 

 548 

Fig. 19 Numerical and experimental heave RAOs for the square plate with two different thicknesses, b = 5cm and b = 549 

7.5cm 550 

 551 

As discussed before, the cube has shown an obvious heave resonance at about λ/Lc = 8. To further 552 

investigate this more numerical tests are run for a square plate of length 30cm with various thicknesses 553 

ranging from 5cm to 30cm, allowing for the systematic analysis of the effect of thickness as it changes 554 

gradually from a square plate to a cube. Fig. 20 shows the numerical result of heave response of those square 555 

plates with various floe thicknesses b. We can see from the figure that when the thickness b ≥ 15cm or the 556 

relative thickness b/Lc ≥ 0.5, the heave RAO shows an obvious resonance, and with the thickness increasing, 557 

the heave resonance turns to be more and more significant. 558 

 559 

 560 

Fig. 20 Numerical result of heave response of square plates with variable floe thicknesses b 561 

 562 

6. Conclusion 563 
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 564 

A series of physical model tests are conducted to study response of small ice floes in regular water waves. 565 

Since this experiment addresses the research gap in the small ice floe kinematics, a numerical simulation of 566 

the same problem is necessary to validate the experimental results. Additionally, due to the high demand for 567 

resources and time consuming nature of the experiment, finding a reliable numerical tool is vital for the 568 

problem of small ice floes in water waves. To achieve this purpose, the linear analysis based on the potential 569 

flow model and the CFD simulation based on the viscous flow model are adopted and compared with the 570 

experimental data. Many distinct characteristics associated with kinematics of small ice floes in waves are 571 

identified in both the numerical and experimental studies. 572 

The relative wavelength λ/Lc is found to have dramatic effect on the heave and surge RAOs. The heave 573 

resonance occurs for the cube at approximately the relative wavelength λ/Lc = 8, whereas for the square plate 574 

only an increasing trend is observed in the heave response. The present numerical simulation reveals that the 575 

heave RAO increases with the floe thickness, and the heave resonance appears at the relative thickness b/Lc 576 

≥ 0.5. The square and triangle plates with the same thickness b show minimal difference in the heave and 577 

surge motions. In the vertical direction the maximum upward and downward velocities are approximately the 578 

same. However, in the horizontal direction the maximum forward velocity is larger than the backward 579 

velocity and the difference causes the drift displacement. Both the vertical relative velocity Vy/Vp and the 580 

ratio of the forward and backward velocities in the horizontal direction V+/V-  show a resonance at λ/Lc = 8. 581 

No backward velocity is observed when the relative wavelength λ/Lc is relatively small for the square plate; 582 

the floe moves forwards all the time. In addition to the comparison with the experimental results, to show the 583 

factor which affects the resonance, several additional cases other than that in the experiments are simulated 584 

to show the trend of body motions from non-resonance to resonance. 585 

The linear results obtained by HydroSTAR® seem to overestimate the surge and heave RAOs especially 586 

for the cube when the resonance occurs in the range of λ/Lc = 6 to 9, probably because the nature of linear 587 

potential flow model adopted in HydroSTAR®. The inaccuracy can also be observed for the square plate 588 

considered here in the regime where λ/Lc = 2 to 4. In general, the open source CFD software OpenFOAM® 589 

can provide much better agreement with the experimental data than the linear analysis. Extensive CFD 590 

simulations and comparisons with the experimental data reveal that the numerical results obtained by 591 

OpenFOAM® are reasonably accurate, except for the underestimation of the heave RAO for the square plate. 592 
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The comparison shown in this study indicates that the fluid viscosity is an important parameter which cannot 593 

be ignored at laboratory scale when investigating the response of small ice floes in water waves. 594 
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 670 

 671 

(a) 672 

 673 

(b) 674 

Fig. 1 a) Image of a floe model with attached LED lights undergoing testing in regular waves and b) a schematic diagram of 675 

the flume. 676 
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 684 

 685 

Fig. 2 An example of x displacement trace in experiment and corresponding surge motion after processing  686 

 687 

 688 

 689 

Fig. 3 An illustration of determination of drift velocity Vd using the best-fitting linear line approach. 690 
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 697 

  698 

(a) Surge                                                                              (b) Heave 699 

Fig. 4  Comparison of surge (a) and heave (b) RAOs of cube between the linear analysis and experiment 700 

 701 

 702 

  703 

(a) Surge                                                                              (b) Heave 704 

Fig. 5 Comparison of surge (a) and heave (b) RAOs of square plate between the linear analysis and experiment 705 
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 716 

 717 

Fig. 6 The 3D view of an example mesh in OpenFOAM® for ice floe problem 718 

 719 

  720 

 721 

(a) x displacement 722 

 723 

(b) y displacement 724 

Fig. 7 Numerical and experimental results of time series of x (a) and y (b) displacements for the square plate 725 
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 729 

 730 

Fig. 8 Numerical result of trajectory of the square plate in waves 731 

 732 

 733 

  734 

 (a) Surge                                                                              (b) Heave 735 

Fig. 9 Comparison of surge (a) and heave (b) RAOs of the cube between the present numerical and experimental results, 736 

and the experimental data in Lever et al. (1988a) 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

6.0 6.1 6.2 6.3 6.4 6.5
0.80

0.85

0.90

0.95

1.00

 

y
 

x



 
 

30 
 

 751 

     752 

(a) Surge                                                                              (b) Heave 753 

Fig. 10  Comparison of surge (a) and heave (b) RAOs of the square plate between the present numerical and experimental 754 

results 755 

 756 

           757 

                                 758 

(a) λ/Lc = 4                                                                                        (b) λ/Lc = 10 759 

Fig. 11 The 3D free surface profile around the square plate for λ/Lc = 4 (a) with green water and λ/Lc = 10 (b) without green 760 

water 761 
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 770 

 771 

(a) Surge 772 

 773 

(b) Heave 774 

Fig. 12 Comparison of surge (a) and heave (b) RAOs of three different body shapes between the present numerical and 775 

experimental results 776 
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 785 

 786 

(a) x velocity 787 

 788 

(b) y velocity 789 

Fig. 13 Time series of x (a) and y (b) velocities obtained by both the numerical simulation and experiment for the square 790 

plate with λ = 3m and H = 0.132m 791 
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 793 

 794 

(a) x velocity                                                                     (b) y velocity 795 

Fig. 14 Comparison of numerical and experimental results of x (a) and y (b) velocities normalized by the theoretical water 796 

particle velocity for the cube 797 
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 800 

  801 

Fig. 15 Comparison of numerical and experimental results of the ratio of horizontal positive and negative velocities for the 802 

cube as a function of relative wave length 803 

 804 

 805 

 806 

Fig. 16 Numerical result of displacement in the x direction for the square plate at λ/Lc = 2 and 5 807 
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 816 

                                 817 

(a) t = 10.3s                                                                                              (b) t = 10.9s 818 

Figure. 17 Velocity field around the cube with λ/Lc = 13 and H = 0.052m at two time instants:  (a) t = 10.3s and (b) t = 10.9s 819 

 820 

 821 

 822 

Fig. 18 Numerical result of drift velocity for the square plate and comparison with the experimental results of both the 823 

present study and Huang et al. (2011) 824 
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  833 

 834 

Fig. 19 Numerical and experimental heave RAOs for the square plate with two different thicknesses, b = 5cm and b = 835 

7.5cm 836 

 837 

 838 

 839 

Fig. 20 Numerical result of heave response of square plates with variable floe thicknesses b 840 
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 842 

Table 1 Summary of OpenFOAM® simulations 843 

 844 

Number of runs λ(m) H(m) H/λ λ/Lc 

Cubic model (Lc = 20) with different wavelengths 

11 1 to 3.0 0.02 to 0.06 0.02 5 to 15 

Square plate (Lc = 30 b = 5) with different wavelengths 

12 0.4 to 3.0 0.0176 to 0.132 0.044 1.333 to 10 

Triangle plate (Lc = 30 b =5) with different wavelengths 

8 0.4 to 2.6 0.0176 to 0.1144 0.044 1.333 to 8.667 

Square plate (Lc = 30 b = 5) with different wave heights 

8 1.8 0.02 to 0.16 0.0111 to 0.0899 6 

Square plate (Lc = 30cm) with different thickness b = 7.5, 10, 15, 20, 30cm  

4 0.8 2.0 0.15 0.02 

 845 

 846 

 847 


