e-space
Manchester Metropolitan University's Research Repository

    Indirect electroanalytical detection of phenols

    Kolliopoulos, AV, Kampouris, DK and Banks, CE (2015) Indirect electroanalytical detection of phenols. Analyst, 140.

    [img]
    Preview

    Available under License Creative Commons Attribution.

    Download (1MB) | Preview

    Abstract

    A novel indirect electrochemical protocol for the electroanalytical detection of phenols is presented for the first time. This methodology is demonstrated with the indirect determination of the target analytes phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol through an electrochemically adapted optical protocol. This electrochemical adaptation allows the determination of the above mentioned phenols without the use of any oxidising agents, as is the case in the optical method, where pyrazoline compounds (mediators) chemically react with the target phenols forming a quinoneimine product which is electrochemically active providing an indirect analytical signal to measure the target phenol(s). A range of commercially available pyrazoline substitution products, namely 4-dimethylaminoantipyrine, antipyrine, 3-methyl-1-(2-phenylethyl)-2-pyrazolin-5-one, 3-amino-1-(1-naphthylmethyl)-2-Pyrazolin-5-one, 4-amino-1,2-dimethyl-3-pentadecyl-3-pyrazolin-5-one hydrochloride, 3-amino-1-(2-amino-4-methylsulfonylphenyl)-2-pyrazolin-5-one hydrochloride and 4-aminoantipyrine are evaluated as mediators for the indirect detection of phenols. The indirect electrochemical detection of phenol, 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol through the use of 4-aminoantipyrine as a mediator are successfully determined in drinking water samples at analytically useful levels. Finally, the comparison of the direct (no mediator) and the proposed indirect determination (with 4-aminoantipyrine) towards the analytical detection of the target phenols in drinking water is presented. The limitation of the proposed electroanalytical protocol is quantified for all the four target phenols.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    275Downloads
    6 month trend
    383Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record