Jones, S, Richardson, N, Bennett, M and Hoon, SR (2015) The application of magnetic measurements for the characterization of atmospheric particulate pollution within the airport environment. SCIENCE OF THE TOTAL ENVIRONMENT, 502. ISSN 0048-9697
|
Available under License In Copyright. Download (369kB) | Preview |
Abstract
The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of atmospheric particulate matter (PM) on health and the environment. PM within the airport environment may be derived from a range of sources. To date, however, the identification of individual sources of airport derived PM has remained elusive but constitutes a research priority for the aviation industry. The aim of this research was to identify distinctive and characteristic fingerprints of atmospheric PM derived from various sources in an airport environment through the use of environmental magnetic measurements. PM samples from aircraft engine emissions, brake wear and tire wear residues have been obtained from a range of different aircraft and engine types. Samples have been analyzed utilizing a range of magnetic mineral properties indicative of magnetic mineralogy and grain size. Results indicate that the dusts from the three ‘aircraft’ sources, (i.e. engines, brakes and tires) display distinctive magnetic mineral characteristics which may serve as ‘magnetic fingerprints’ for these sources. Magnetic measurements of runway dusts collected at different locations on the runway surface also show contrasting magnetic characteristics which, when compared with those of the aircraft-derived samples, suggest that they may relate to different sources characteristic of aircraft emissions at various stages of the take-off/landing cycle. The findings suggest that magnetic measurements could have wider applicability for the differentiation and identification of PM within the airport environment.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.