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Abstract

The significant increase in global air travel which has occurred during the last fifty 

years has generated growing concern regarding the potential impacts associated 

with increasing emissions of atmospheric particulate matter (PM) on health and the 

environment.  PM within the airport environment may be derived from a range of 

sources.  To date, however, the identification of individual sources of airport derived 

PM has remained elusive but constitutes a research priority for the aviation industry. 

The aim of this research was to identify distinctive and characteristic fingerprints of 

atmospheric PM derived from various sources in an airport environment through the 

use of environmental magnetic measurements. PM samples from aircraft engine 

emissions, brake wear and tyre wear residues have been obtained from a range of 

different aircraft and engine types.  Samples have been analysed utilising a range of 

magnetic mineral properties indicative of magnetic mineralogy and grain size. 

Results indicate that the dusts from the three ‘aircraft’ sources, (i.e. engines, brakes 

and tyres) display distinctive magnetic mineral characteristics which may serve as 

‘magnetic fingerprints’ for these sources. Magnetic measurements of runway dusts 

collected at different locations on the runway surface also show contrasting magnetic 

characteristics which, when compared with those of the aircraft-derived samples, 

suggest that they may relate to different sources characteristic of aircraft emissions 

at various stages of the take-off/landing cycle. The findings suggest that magnetic 

measurements could have wider applicability for the differentiation and identification 

of PM within the airport environment. 
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1. Introduction

During the last fifty years the global demand for air travel has increased 

exponentially.  International air passenger numbers between 1960 and 2005 have, 

on average, increased by more than 8% year on year and, furthermore, this trend 

appears set to continue with a predicted rise in global air travel of between 4.5 and 

6% per annum over the next twenty years (Stettler et al., 2011).

Alongside the increasing demand for air travel, concerns have been raised in relation 

to the anticipated environmental impacts associated with such growth, including 

aircraft noise, climate change and air quality issues (Mahashabde et al., 2011).  A 

major area of concern relating to air quality is the potential impact of emissions of 

atmospheric particulate matter (PM) on health (Press-Kristensen, 2012; Spassov et 

al., 2004; Saragnese et al., 2011; Stettler et al., 2011). The airport environment 

includes a wide range of sources of primary PM including aircraft (engines, brakes 

and tyres); service vehicles; ground support equipment, building emissions and 

adjacent road and rail networks.  This paper focuses entirely on primary PM, 

although secondary PM, occurring as a result of chemical reactions associated with 

more volatile emissions, may also be present in the airport environment.

At present there is a limited amount of published data relating to the quantity and 

nature of airport derived PM.  However, a recent study of PM emissions from various 

sources at Copenhagen Airport provided evidence to suggest that 90% of ultrafine 

PM (<0.1 µm diameter) on the apron originated from airport derived sources (Press-

Kristensen, 2012).  The Copenhagen study highlighted the urgent need for research 

into the nature of airport derived PM in order to assess the health implications for 
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airport employees and, in particular, those working in close proximity to direct 

sources of ultrafine PM such as aircraft engines and diesel vehicle exhausts.   

To assess the potential impact of airport derived PM emissions on airport employees, 

passengers and nearby communities, it is necessary to be able to attribute the 

measured ambient PM to individual emission sources.  One approach to source 

attribution would be to identify particulate ‘fingerprints’ characteristic of each source 

to enable source differentiation of PM deposits. Previous studies of the airport 

environment have attempted to achieve this, predominantly through the use of 

geochemical analysis (Herndon et al., 2005; Amato et al., 2010). The identification of 

unambiguous ‘fingerprints’, however, has so far remained elusive and has been 

identified as a research priority for the aviation industry (Webb et al., 2008; Wood et 

al., 2008).   

Environmental magnetism involves a number of non-destructive, inexpensive and 

relatively rapid measurements involving the application of artificially induced 

magnetic fields to natural materials.  The measurements provide information about 

the type, grain size and concentration of magnetic minerals in the material. 

Environmental magnetism has been used as an effective technique for the 

identification of characteristic particulate ‘fingerprints’ allowing for the discrimination 

of different emission types and PM sources in the urban environment (Hunt et al., 

1984) and to distinguish between PM arising from fossil fuel combustion/industrial 

processes and those derived from natural sources such as soil erosion (Oldfield et 

al., 1985; Hunt, 1986).  Hunt et al. (1984) found that vehicle-derived particulates 
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were dominated by ferrimagnetic (i.e. magnetite/maghemite-like) minerals, while fly-

ash samples from solid fuel (coal) combustion showed different magnetic behaviour 

consistent with a significant antiferromagnetic (i.e. haematite-like) content.  Different 

combustion processes and fossil fuels give rise to particulate emissions of 

contrasting magnetic mineralogy and grain size. More recently, magnetic 

measurements have been applied to sinks of atmospheric PM such as tree leaves 

and surface vegetation (Matzka and Maher, 1999; Maher et al., 2008), and road 

surface dusts (Robertson et al., 2003; Bucko et al., 2010; Wang et al., 2012; Crosby 

et al., 2014) to obtain qualitative attribution of atmospheric PM sources in the urban 

environment. 

This paper investigates the use of environmental magnetic measurements as a 

technique for discriminating between atmospheric PM from different emission 

sources in the airport environment, thereby establishing distinctive ‘magnetic 

fingerprints’ to assist in source apportionment.

2. Methodology

2.1 Engine, Brake and Tyre Dust Sampling 

Engine, brake and tyre dust samples were collected from a range of jet aircraft at the 

British Airways (BA) engineering facility at London Heathrow Airport (LHR), UK 

between August 2010 and October 2013.  The aircraft sampled comprised Boeing 

747-436; 767-336; 777-236 and Airbus A319-131 and A320-232. Engine dust 

samples (n = 13; sample mass: 0.6 – 1.4 g) from several engine types were 
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collected from the mixer shroud surrounding the turbine blades, onto which some PM 

in the exhaust emissions impacts directly during routine engine function, leading to a 

slight accumulation over time (BA Engineering, pers. comm.).   Brake dust samples 

(n = 16; sample mass: 0.75 – 3.5 g) were collected from the wheel hubs of these 

aircraft.  Brake lining wear occurs most commonly during landing and less 

significantly during taxiing operations as a result of frictional heat generation (Curran, 

2006) which results in the production of brake dust.   Bennett et al. (2011) suggest 

that samples collected from the undercarriage and wheel hubs would contain PM 

from a range of sources including tyres, brakes, runways and taxiways.  However, 

following the advice of BA engineers (pers. comm.) it was decided that brake dust 

sampling would focus on the wheel hub area as it was their view that this would 

largely restrict the sample to brake derived material. Samples of tyre dust (n = 4; 

sample mass: 1.9 – 5.0 g) were collected from the nose landing gear (NLG) wheel 

well of a Boeing 747-436 and a Boeing 767-336 aircraft. Tyre abrasion occurs at the 

point of nose wheel retraction due to the action of the spin brake function associated 

with these aircraft types. The resultant tyre debris accumulates on ledges and gullies 

in the nose landing gear.  All dust samples were collected using a clean wooden 

spatula and/or small paint brush before being transferred to clean, self-sealed 

polythene bags to avoid contamination.  

2.2 Runway Dust Sampling

Runway dust sampling was conducted at Manchester International Airport (MIA) 

(Figure 1).   MIA is located 17km south west of Manchester in the north west of 

England and is the third largest airport in the UK, serving a total of 19.7 million 
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passengers in 2012   (CAA, 2013). A minimum of five days dry weather preceded 

each sampling visit to diminish the wash-out effect as described in Kim et al. (2007). 

MIA has two runways 23R/05L (Runway 1) and 23L/05R (Runway 2).  Dual runway 

manoeuvres occur throughout the week for a maximum period of up to eight hours 

per day. The nature of the operations are dependent on the prevailing wind direction. 

When westerly wind directions prevail departures take place on runway 23L and 

landings on 23R. There are no landings on 23L, apart from in exceptional 

circumstances, due to the absence of an Instrument Landing System (ILS) on this 

runway. When the wind is from an easterly direction 05R is used for arrivals, and 05L 

for departures. Outside these periods single runway operations are maintained with 

23R/05L operating as the main runway.  

Samples of runway dust (n = 13; sample mass: 0.6 – 0.8 g) were collected at 100m 

intervals along runway 23L/05R using a clean plastic dustpan and brush before 

being transferred to clean self-sealed polythene bags.   Sampling commenced from 

the start of the runway pre-threshold area of runway 23L and continued along the 

entire length of the runway.  

2.3 Magnetic Measurements

Samples were packed into 10ml plastic containers (Azlon, SciLabware Ltd, Staffs., 

ST4 4RJ, UK) prior to analysis.  Low-field magnetic susceptibility (χ) was measured 

using a Bartington Instruments (Witney, Oxon., OX28 4GE, UK) MS2B sensor and 

meter.  The values used here are low frequency mass-specific magnetic 
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susceptibility (χ). An Anhysteretic Remanent Magnetisation (ARM) was induced in 

the samples using a peak alternating field (AF) of 100 mT and a direct current (DC) 

biasing field of 0.04 mT, provided by a Molspin shielded alternating field 

demagnetiser (Bartington Instruments, Witney, Oxon., OX28 4GE, UK).  The 

resulting magnetisation retained by the sample (i.e. remanence) was measured 

using a Molspin magnetometer and recorded as the ARM.  The ARM is presented as 

susceptibility of ARM (χARM) by normalising the ARM for the DC biasing field used. 

Isothermal remanent magnetisation (IRM) measurements were carried out using a 

Molspin pulse magnetiser and magnetometer.  The IRM acquired in the initial 

forward field of 1 T is assumed to be equivalent to a Saturation Isothermal Remanent 

Magnetisation (SIRM).  Reverse field ratios were determined by placing a previously 

saturated sample successively in reverse fields of increasing strength (-20 mT; -40 

mT; -100 mT; -300 mT) and measuring the isothermal remanence at each stage. 

The data are expressed as a ratio IRM-xmT/SIRM. 

Some of these magnetic parameters can usefully be combined into ratios to provide 

further insight into variations in ferrimagnetic mineral grain size. These are referred 

to as interparametric ratios.  The ratios used in this study are χARM/χ and 

χARM/SIRM. Relatively higher values of these ratios are indicative of finer 

ferrimagnetic mineral grain sizes, while lower ratios suggest the presence of coarser 

ferrimagnetic mineral grain sizes. The definition and relevance of the various 

magnetic parameters are listed in Table 1. 

3. Results
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Table 2 summarises the results of the magnetic analyses of the engine, brake and 

tyre dust samples.  The variables presented in this paper provide information on the 

magnetic  mineralogy  and  grain  size  of  the  magnetic  assemblages  within  each 

sample set rather than concentration related variables. 

  

The engine dusts are characterised by higher χARM/χ and χARM/SIRM ratios than 

those for the brake dusts. The tyre dusts display similar  χARM/χ ratios to those of 

the brake dusts, whilst the  χARM/SIRM ratios are intermediate between the other 

two sources. Statistical analysis using the Kruskal-Wallis Test demonstrate that the 

ratios display a significant difference between the three sample sets at a significance 

level of p = 0.05. The higher χARM/χ and χARM/SIRM ratios of the engine dusts are 

indicative of finer ferrimagnetic mineral grain sizes whilst the lower values exhibited 

by the brake and tyre dust samples suggest that these samples are dominated by 

coarser ferrimagnetic mineral grain sizes (Walden et al., 1999).

The contrast in the magnetic mineral characteristics of the engine, brake and tyre-

derived particulates is further illustrated in Figure 2, which plots IRM-20mT/SIRM 

against IRM-300mT/SIRM for all samples.  While there is only a slight variation in the 

range of the lower reverse field ratios (IRM-20mT/SIRM), the higher reverse field ratio 

(IRM-300mT/SIRM) discriminates between the three sample sets more effectively.  The 

engine dust samples have significantly less negative IRM-300mT/SIRM ratios, 

suggestive of a much higher antiferromagnetic component, than the brake dusts with 

more negative higher reverse field ratios (Walden et al., 1999). The tyre dust 
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samples are situated midway between the engine dusts and brake dusts for the IRM-

300mT/SIRM ratio.

Cluster analysis was used to classify all the samples into groups using the four 

magnetic parameters presented here.  An agglomerative method was applied to all 

the data and normalised to eliminate differences in magnitude between the variables. 

The analysis split the samples into three major groups, one group containing all the 

engine dust samples, a second including all the brake dust samples and a third 

group comprising the tyre dust samples.

Interparametric ratios (χARM/χ;  χARM/SIRM) are not available for the runway dust 

samples  due  to  low  sample  mass  and  low  magnetic  mineral  concentrations 

precluding the accurate measurement of magnetic susceptibility and ARM.  Figure 2 

presents the runway dust samples plotted on the scatter plot of IRM-20mT/SIRM versus 

IRM-300mT/SIRM that also includes the aircraft engine, brake and tyre dust samples. 

The results for the samples collected from Zone A of the runway (Figure 1) show a 

close correspondence to those of the engine dusts,  while dust samples collected 

from Zone B (Figure 1) display similar magnetic characteristics to those of the brake 

and tyre dusts. The most significant discriminator of the two variables used in the 

scatter plot is the higher reverse field ratio (IRM-300mT/SIRM). Less negative values for 

this ratio are associated with the aircraft engine dusts and runway dust samples from 

Zone  A.  The  ratio  indicates  a  significant  antiferromagnetic  component  in  these 

samples, this being smaller and less evident in the brake and tyre dusts and Zone B 

runway dusts.    
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The runway dusts may also contain PM and associated magnetic minerals from 

other, more regional sources associated with urban and industrial processes, 

particularly at locations in close proximity to urban areas. The IRM-100mT/SIRM ratio 

(often referred to as the S-ratio) has been used as a quick index of magnetic 

mineral grain size and the relative amount of ferrimagnetic and 

anitiferromagnetic minerals in a sample. Ratios between -1.00 and -0.70 are 

characteristic of coarser-grained ferrimagnetic material (e.g. magnetite), 

whereas values above -0.40 are indicative of a significant antiferromagnetic (e.g. 

haematite) content. The IRM-100mT/SIRM ratio of magnetic particles derived from 

fossil fuel combustion during industrial processes, and in urban road dusts, 

where the main source is motor vehicles, are typically between -1.00 and -0.72 

(Petrovsky and Ellwood, 1999; Robertson et al., 2003; Crosby et al., 2014). 

Ombrotrophic peat bogs receive all inputs directly from the atmosphere, and 

contain a record of atmospheric particulate pollution in layers of recent 

accumulation. Magnetic measurements of the uppermost layers of peat from 

locations close to urban and industrial areas have been shown to have IRM-

100mT/SIRM ratios of -0.80 – 0.65, which is indicative of the magnetic 

characteristics of the regional PM pollution input from a range of urban and 

industrial sources (Richardson, 1986; Thompson and Oldfield, 1986). The aircraft-

derived PM has IRM-100mT/SIRM ratios ranging from -0.71 to -0.37 (Table 2), and 

the runway dusts range from -0.54 - -0.30 (Table 3) suggesting that the magnetic 

characteristics of PM in the airport environment is quite different from more 

regional sources. 

  4. Discussion
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Significant differences have been observed between the magnetic properties of the 

engine, brake and tyre dust samples.  The magnetic minerals in the engine dusts are 

characterised by finer ferrimagnetic grain sizes and contain a significant 

antiferromagnetic component.  Conversely, the magnetic assemblages in the brake 

and tyre-derived dust are predominantly coarser grained ferrimagnetic minerals. An 

explanation for such variation must relate to differences in the nature of the iron 

content in the aviation fuel Jet A-1, Carbon-Carbon (C/C) brakes and aircraft tyres, 

and the combustion processes and conditions at the point of conversion of non-

magnetic or weakly magnetic forms of iron into magnetic iron oxides. Ultrafine 

particulates are a component of aircraft exhaust emissions and generally form from 

the incomplete combustion of jet fuel in the combustion section of the jet engine 

(Starik, 2008; Webb et al., 2008).  The primary particulates are predominantly 

carbonaceous material (or soot) and are composed of organic compounds and 

elemental or black carbon (Petzold et al., 2005). Ultrafine primary particulate matter 

emitted directly from aircraft engines may also include metal particles (Starik, 2008). 

These may be derived from engine erosion or from iron impurities in the Jet A-1 fuel 

(Penner et al., 1999; Jones, 2008). During high temperature combustion, the iron 

impurities are converted into magnetic oxides which then contribute to the primary, 

non-volatile particulate matter.  The significant antiferromagnetic mineral (haematite-

like) content of these particulates may relate to the specific nature of the iron 

impurities in the fuel and/or the chemical processes which take place during the fuel 

combustion stage.  

Brake dust or wear debris largely arises from mechanical and/or chemical reactions 

on sliding surfaces during brake operation when aircraft are taxiing, on landing or 
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during undercarriage retraction on take-off (Hutton et al., 1999; Rietsch et al., 2009). 

Modern aircraft brakes consist of C/C combinations due to their stable behaviour 

characteristics at high temperatures. These brakes often contain additives to modify 

the friction properties, temperature characteristics and mechanical properties of the 

brakes or to act as antioxidants during brake operation (Blau, 2001). Such additives  

may include iron oxides such as magnetite (Blau, 2001). Frictional heat generation 

which occurs during braking operations, primarily upon landing and less significantly 

during taxiing operations, results in the wear of brake lining particles which form a 

friction film of abraded wear debris that often adheres to the wear surfaces of the 

C/C composite brakes. Some of this wear debris is ultimately released as airborne 

particulate  matter  (Curran,  2006,  Hutton et  al.,  1999).  Chemical  reactions  and 

elevated temperatures on the sliding/rubbing interface of the brakes during operation 

may lead to the conversion of any iron additives or impurities within the matrix of the 

C/C brake into coarse grained ferrimagnetic forms of magnetic minerals. This may 

be expected due to the operating temperatures generally between 300 - 400oC (BA 

Engineering,  pers.  comm.),  and the  oxidising  environment  within  the area of  the 

braking  mechanism.  It  is  presumed  that  such  ferrimagnetic  minerals 

(magnetite/maghemite-like) are a component of the PM which forms the wear debris 

ejected during braking. 

Coarse grained ferrimagnetic minerals in the tyre dust samples are a component of 

the PM formed as the nose wheel tyre rubs against the ‘snubber pads’ as part of the 

spin brake function following retraction of the undercarriage.  The frictional 

temperatures generated during this short term phase must be sufficient to convert 

any iron impurities in the tyre to magnetic forms of iron oxides.  Although 
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composition data specific to aircraft tyres is not freely available in the literature as it 

is commercially sensitive, tyres are known to contain a wide range of materials 

including metals (Lobo et al. 2013). Bennett et al. (2011) found irregularly shaped 

iron particulates of 10 µm diameter or less in undercarriage dust, which also 

contained PM chemically ascribed to tyre smoke.

The results of magnetic measurements of the runway dust samples from Zone A 

(Figure 1) show a predominance of fine-grained ferrimagnetic forms together with a 

significant  antiferromagnetic  component,  both  of  which  are  consistent  with  the 

magnetic characteristics of the engine dusts. Zone A incorporates the initial stages of 

the  take-off  roll  for  aircraft  departing  on runway 23L.   These results  suggest  an 

accumulation of magnetic particulates on the runway surface, released from aircraft 

engines during the initiation of take-off and when the aircraft is still moving slowly. 

Such findings are consistent with those of Zhu et al. (2011) who measured very high 

concentrations of ultrafine particulates immediately downwind of aircraft take-off at 

Los Angeles International Airport.

The runway dust samples from Zone B (Figure 1) are dominated by coarse-grained 

ferrimagnetic minerals, similar to the brake and tyre-derived dust samples. Zone B 

represents the main landing zone for aircraft arriving on runway 05R. Such findings 

point to the release of brake dust and tyre smoke PM followed by deposition on the 

runway  surface  during  landing  and  braking  operations.  Lobo  et  al.  (2013)  and 

Bennett et al. (2011) suggest that the number density of brake dust and tyre smoke 

PM emissions from landing aircraft is rather low and difficult  to detect by particle 
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counters.  The  data  presented  here  highlights  the  sensitivity  of  magnetic 

measurements for the identification and differentiation of different sources or types of 

atmospheric PM compared with other analytical techniques.  It should be noted that 

some  of  the  runway  dust  samples  from  Zone  B  contained  visible  tyre  material. 

Rubber deposits build up on runway surfaces due to the friction of the aircraft tyres 

on the runway surface during landing, causing the rubber to polymerise and harden 

to the runway surface. This tyre material had similar physical characteristics to the 

tyre dusts sampled from the nose landing gear wheel well. It is possible that this 

coarse  material  dominates  the  ‘tyre’  magnetic  characteristics  of  both  the  nose 

landing gear wheel well deposit and the runway dust rather than any fine PM from 

tyre smoke. 

5. Conclusion

Dust samples collected from commercial aircraft engines, brakes and tyres have 

been shown to differ significantly in terms of the nature and grain size of the 

magnetic minerals they contain.  A ‘harder’ magnetic mineral component related to 

the presence of antiferromagnetic minerals and finer ferrimagnetic mineral grain 

sizes is characteristic of engine dusts, distinguishing them from aircraft brake and 

tyre PM and deposits which display mainly coarser grained ferrimagnetic mineral 

assemblages.  These contrasting magnetic characteristics are thought to be due to 

the different chemical compositions of aviation fuel (Jet A-1), C/C brakes and tyres 

used on commercial aircraft, and the combustion processes and temperatures under 

which the magnetic particulates are formed. The results demonstrate that magnetic 
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measurements have the potential to identify and differentiate particles from three 

different aviation sources within an airport environment.

The magnetic measurement data for the runway dusts suggests wide variations in 

magnetic mineralogy and grain size. Samples collected in Zone A (close to the 

runway threshold) show a close correspondence in their magnetic characteristics to 

those of the engine dusts, whilst dust samples collected within Zone B (distal from 

the runway threshold) have similar magnetic characteristics to those of the brake and 

tyre dusts. When compared with the magnetic properties of other potential sources 

of a more regional nature, it would appear that the main sources of runway PM are 

aircraft derived.  Therefore, these results suggest that magnetic measurements 

could be applied successfully for the identification of PM sources in the airport 

environment and, thus, contribute to studies of source apportionment and the 

potential impact on airport employees, passengers and the surrounding community. 
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Tables 1, 2 & 3

Table 1: Summary of magnetic parameters.

Magnetic parameter Interpretation

χ

ARM

SIRM

χARM/χ

Magnetic susceptibility (χ) the ratio between the magnetisation 
induced in a sample and the strength of the magnetising field. It is 
indicative of the concentration of ferrimagnetic minerals such as 
magnetite (Units: m3 kg-1).

Anhysteretic Remanent Magnetisation (ARM) is induced by 
subjecting a sample to a smoothly increasing then decreasing AC 
field (100mT) in a constant DC field (0.04mT). The data are 
expressed as the suscptibility of ARM (χARM) by dividing the ARM 
by the DC biasing field strength. χARM is sensitive to the 
concentration of ferrimagnetic grains mainly of finer, stable single 
domain grain sizes (Units: m3 kg-1).
   
Saturation Isothermal Remanent Magnetisation is the highest 
magnetic remanence that can be produced in sample by the 
application of a very high magnetic field (in this study 1.0T; 1000mT). 
SIRM relates to both magnetic mineral type and concentration 
(Units: A m2 kg-1).

Where there is little variation in magnetic mineral type, the ratio of
these two parameters can be diagnostic of relative magnetic mineral 
grain size variations.

χARM /SIRM The ratio of these two parameters is diagnostic of relative variations 
in magnetic mineral grain size in samples where the magnetic 
mineral type remains relatively constant (Units: A m-1).

IRM-xmT /SIRM Reverse field ratios obtained by applying one or more reverse 
magnetic fields to a previously magnetically saturated sample.  The 
loss of magnetisation at the selected reverse fields is expressed as a 
ratio of the SIRM and can be used to discriminate between 
ferrimagnetic and antiferromagnetic mineral types and/or magnetic 
mineral grain size.
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Table 2: Summary of magnetic parameters of engine, brake and tyre dusts.

Magnetic parameters Brake (n = 16) Engine (n = 13) Tyre (n = 4)

χARM/χ Range
Mean ± SD

9.90 – 29.73
19.72 ± 5.2

36.02 – 68.77
53.42 ± 9.53

15.76 -27.9
21.55 ± 6.09 

χARM /SIRM Range
Mean ± SD

87.92 – 152.16
122.57 ± 17.44

166.7 – 331.8
260.8 ± 50.1

150.5 – 176.06
164.23 ± 12.89

IRM-20mT /SIRM Range
Mean ± SD

0.48 – 0.65
0.58 ± 0.05

0.60 – 0.80
0.70 ± 0.06

0.69 – 0.72
0.71 ± 0.01

IRM-100mT /SIRM Range
Mean ±SD

-0.71 - -0.59
-0.64 ± 0.04

-0.65 - -0.37
-0.51 ± 0.09

-0.56 - -0.54
-0.55 ± -0.01

IRM-300mT /SIRM Range
Mean ± SD

-0.98 - -0.95
-0.97 ± 0.01

-0.93 - -0.88
-0.90 ± 0.02

-0.95 - -0.94
-0.94 ± 0.00

Table 3: Summary of magnetic parameters of runway dusts (Zone A and Zone B).
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Magnetic parameters
Zone A (Take-off) 
(n = 6)

Zone B (Landing)
(n = 7)

IRM-20mT /SIRM Range
Mean ± SD

0.62 – 0.79
0.71 ± 0.06

0.66 – 0.73
0.70 ± 0.03

IRM-100mT /SIRM Range
Mean ±SD

-0.42 - -0.30
-0.36 ± 0.05

-0.54 - -0.50
-0.52 ± 0.02

IRM-300mT /SIRM Range
Mean ± SD

-0.90 - -0.83
-0.87 ± 0.03

-0.97 - -0.94
-0.96 ± 0.01
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Figure 1 and figure caption

Figure 1

Figure 1 caption:  

Location of runway dust sampling sites, runways 23L and 05R, Manchester International 
Airport (MIA), UK. Inset map shows the location of MIA within the north west of England, 
UK and its proximity to major cities.  Zone A (0-700m) represents a section of the runway 
which would include the initial stages of the take-off cycle on runway 23L.  Zone B (2300-
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3000m) represents the main landing zone on runway 05R (Map adapted from Google 
Maps).
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Figure 2 and figure caption

Figure 2  

Figure 2 caption:  

IRM -20mT/SIRM versus IRM-300mT/SIRM for aircraft engine, brake, tyre and runway dust 
samples (Zone A = Take-off zone; Zone B = Landing zone). 
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