Manchester Metropolitan University's Research Repository

The effect of ion-beam specimen preparation techniques on vacancy-type defects in silicon

Gandy, A. S. and Donnelly, Steve E. and Beaufort, M.-F. and Vishnyakov, Vladimir and Barbot, J.-F. (2006) The effect of ion-beam specimen preparation techniques on vacancy-type defects in silicon. ISSN 1872-9584

Full text not available from this repository.


Ion bombardment is frequently used in the preparation of thin foils of a variety of materials for analysis by transmission electron microscopy (TEM) and related techniques. We have studied in detail the effects of such specimen preparation techniques on nanometre-sized cavities in silicon by comparing ion-beam milled cross-sectional specimens with those prepared using a small-angle cleavage technique. The cavities have been formed by a prior implantation of energetic helium ions and a high-temperature anneal. In the specimens prepared by ion-beam techniques in two different commercial systems, there is a clear effect on the small cavities. Specifically, the cavities are observed to migrate away from the original surface at both room temperature and liquid nitrogen temperature. The effect is discussed in the context of the interaction of the cavities with mobile vacancies and interstitials injected by the ion bombardment. We believe this to be an important effect that must be taken into account when using TEM techniques to study defects in semiconductors.

Impact and Reach


Activity Overview

Additional statistics for this dataset are available via IRStats2.


Actions (login required)

View Item View Item