e-space
Manchester Metropolitan University's Research Repository

The effects of progressive dehydration on strength and power: is there a dose response?

Hayes, Lawrence D. and Morse, Christopher I. (2010) The effects of progressive dehydration on strength and power: is there a dose response? European journal of applied physiology, 108 (4). pp. 701-7. ISSN 1439-6327

Full text not available from this repository.

Abstract

This study examined the effect of exercise- and heat-induced dehydration on strength, jump capacity and neuromuscular function. Twelve recreationally active males completed six resistance exercise bouts (baseline and after each 5 exposure sessions) in an increasing state of hypohydration obtained by repeated heat exposure and exercise sessions (5 periods of 20 min jogging at up to ~80% age predicted heart rate maximum at 48.5 +/- 0.48 degrees C, relative humidity 50 +/- 4%). Relative to starting values, body mass decreased 1.0 +/- 0.5, 1.9 +/- 0.7, 2.6 +/- 0.8, 3.3 +/- 0.9 and 3.9 +/- 1.0% after exposure 1, 2, 3, 4 and 5, respectively. However, plasma volume remained constant. No significant differences existed amongst trials in vertical jump height, electromyography data or isokinetic leg extension at a rate of 120 degrees s(-1). Isometric leg extensions were significantly reduced (P < 0.05) after the first (1% body mass loss) and subsequent exposures in comparison to baseline. Isokinetic leg extensions at a rate of 30 degrees s(-1) were significantly reduced after the third (2.6% body mass loss) and subsequent exposures compared with baseline. No dose response was identified in any of the tested variables yet a threshold was observed in isometric and isokinetic strength at 30 degrees s(-1). In conclusion, dehydration caused by jogging in the heat had no effect on vertical jumping or isokinetic leg extensions at a rate of 120 degrees s(-1). Alternatively, exercise-induced dehydration was detrimental to isometric and isokinetic leg extensions at a rate of 30 degrees s(-1), suggesting the force-velocity relationship in hypohydration merits further research.

Impact and Reach

Statistics

Downloads
Activity Overview
0Downloads
283Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item