Takhar, Harmindar S., Bhargava, Rama, Rawat, S., Bég, Tasveer A., Bég, O. Anwar and Hung, Tin-Kan (2007) Biomagnetic hydrodynamics in a 2-dimensional non-Darcian porous medium: finite element study. Journal Of Theoretical And Applied Mechanics, 37 (2). 05. ISSN 0861-6663
File not available for download.Abstract
In this paper we consider the two-dimensional fully developed steady, Newtonian hydrodynamic flow of a non-conducting biomagnetic fluid (blood) in a two-dimensional (X-Y) non-Darcy porous medium. A drag force model is used to simulate the porous Darcian linear impedance and Forcheimmer quadratic drag in both X and Y directions. The porous biomagnetic flow equations are transformed into a set of coupled dimensionless partial differential equations which are then solved used a finite element model. We study the influence of biomagnetic number (NH), Darcy number (Da) and also Forcheimmer number (Fs) on the X- and Y-direction velocity profiles in detail and also the interactive effects of these parameters. A number of special cases of the flow model are also mentioned. The model finds applications in biomedical device technology, haemotoligical filtration systems, and also in transport in tumors, soft connective tissue zones and electromagnetic therapy modelling.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.