Manchester Metropolitan University's Research Repository

    Stochastic bit-width approximation using extreme value theory for customizable processors

    Özer, Emre, Nisbet, Andy and Gregg, David (2004) Stochastic bit-width approximation using extreme value theory for customizable processors. In: 13th International Conference, CC 2004, 29th March-2nd April 2004, Barcelona, Spain.

    File not available for download.


    Application-specific logic can be generated with a balance and mix of functional units tailored to match an applicationrsquos computational requirements. The area and power consumption of application-specific functional units, registers and memory blocks is heavily dependent on the bit-widths of operands used in computations. The actual bit-width required to store the values assigned to a variable during execution of a program will not in general match the built-in C data types with fixed sizes of 8, 16, 32 and 64 bits. Thus, precious area is wasted if the built-in data type sizes are used to declare the size of operands. A novel stochastic bit-width approximation technique is introduced to estimate the required bit-width of integer variables using Extreme Value Theory. Results are presented to demonstrate reductions in bit-widths, area and power consumption when the probability of overflow/underflow occurring is varied from 0.1 to infinitesimal levels. Our experimental results show that the stochastic bit-width approximation results in overall 32% reduction in area and overall 21% reduction in the design power consumption on a FPGA chip for nine embedded benchmarks.

    Impact and Reach


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics for this dataset are available via IRStats2.


    Repository staff only

    Edit record Edit record