Sulaiman, Mira Mohideen, Fatalla, Abdalbseet Ahmad ORCID: https://orcid.org/0000-0001-5320-8559 and Haider, Julfikar ORCID: https://orcid.org/0000-0001-7010-8285 (2024) The Impact of Incorporating Grapefruit Seed Skin Particles into 3D-Printed Acrylic Resin on Mechanical Properties. Prosthesis, 6 (6). pp. 1420-1436.
|
Published Version
Available under License Creative Commons Attribution. Download (7MB) | Preview |
Abstract
Background: Grapefruit seed skin particles (GSSPs) have antifungal properties due to the presence of flavonoids. Therefore, it has the potential to display antifungal characteristics when added to acrylic resin, but it could affect the mechanical properties of the resin. This study investigated the effects of adding GSSPs on the mechanical characteristics of 3D-printed denture base resins. Purpose: The aim of the present study was to determine the effects of the addition of GSSPs to 3D-printed acrylic at different concentrations on the degree of conversion (DC), surface hardness, flexural strength, and tensile strength. Methods: In this study, 90 samples were printed with acrylic resin via a Digital Light Processing (DLP) printer. Thirty square samples were used for the surface hardness test. Thirty rectangular samples were used for the flexural strength test, and thirty dumbbell-shaped samples were used for the tensile strength test. These materials were prepared by adding different concentrations of GSSPs (0.0 wt.%, 5.0 wt.%, and 7.0 wt.%), which were determined by a pilot study to be the most effective in 3D denture base resins. The Durometer Shore Hardness Scale (DSHS) was used to measure the surface hardness, and a universal testing machine was employed to gauge the flexural strength and tensile strength. Field emission scanning electron microscopy (FE-SEM) was employed for particle size analysis and fracture behavior determination. Results: Compared with those of the control group, the degree of conversion (DC), surface hardness, flexural strength, and tensile strength of the treated groups significantly improved after the addition of 5.0 wt.% and 7.0 wt.% GSSPs. The FE‒SEM images revealed a decrease in porosity as the concentration of GSSPs increased with a brittle fracture behavior. Conclusions: The addition of GSSPs to 3D-printed acrylic is recommended because of their significant positive impacts on the mechanical properties of 3D-printed denture base resin.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.