e-space
Manchester Metropolitan University's Research Repository

    Joint UL/DL Resource Allocation for UAV-Aided Full-Duplex NOMA Communications

    Shi, Wenjuan ORCID logoORCID: https://orcid.org/0000-0002-5232-7836, Sun, Yanjing ORCID logoORCID: https://orcid.org/0000-0002-1389-3958, Liu, Miao ORCID logoORCID: https://orcid.org/0000-0003-1385-266X, Xu, Hua ORCID logoORCID: https://orcid.org/0000-0001-6653-7140, Gui, Guan ORCID logoORCID: https://orcid.org/0000-0003-3888-2881, Ohtsuki, Tomoaki ORCID logoORCID: https://orcid.org/0000-0003-3961-1426, Adebisi, Bamidele ORCID logoORCID: https://orcid.org/0000-0001-9071-9120, Gacanin, Haris ORCID logoORCID: https://orcid.org/0000-0003-3168-8883 and Adachi, Fumiyuki ORCID logoORCID: https://orcid.org/0000-0002-5416-0718 (2021) Joint UL/DL Resource Allocation for UAV-Aided Full-Duplex NOMA Communications. IEEE Transactions on Communications, 69 (12). pp. 8474-8487. ISSN 0090-6778

    [img]
    Preview
    Accepted Version
    Available under License In Copyright.

    Download (1MB) | Preview

    Abstract

    This paper proposes an unmanned aerial vehicle (UAV)-aided full-duplex non-orthogonal multiple access (FD-NOMA) method to improve spectrum efficiency. Here, UAV is utilized to partially relay uplink data and achieve channel differentiation. Successive interference cancellation algorithm is used to eliminate the interference from different directions in FD-NOMA systems. Firstly, a joint optimization problem is formulated for the uplink and downlink resource allocation of transceivers and UAV relay. The receiver determination is performed using an access-priority method. Based on the results of the receiver determination, the initial power of ground users (GUs), UAV, and base station is calculated. According to the minimum sum of the uplink transmission power, the Hungarian algorithm is utilized to pair the users. Secondly, the subchannels are assigned to the paired GUs and the UAV by a message-passing algorithm. Finally, the transmission power of the GUs and the UAV is jointly fine-tuned using the proposed access control methods. Simulation results confirm that the proposed method achieves higher performance than state-of-the-art orthogonal frequency division multiple-access method in terms of spectrum efficiency, energy efficiency, and access ratio of the ground users.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    213Downloads
    6 month trend
    48Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record