e-space
Manchester Metropolitan University's Research Repository

    Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis

    Lopez-Fabuel, Irene, Garcia-Macia, Marina, Buondelmonte, Costantina, Burmistrova, Olga, Bonora, Nicolo, Alonso-Batan, Paula, Morant-Ferrando, Brenda, Vicente-Gutierrez, Carlos, Jimenez-Blasco, Daniel, Quintana-Cabrera, Ruben, Fernandez, Emilio, Llop, Jordi, Ramos-Cabrer, Pedro, Sharaireh, Aseel, Guevara-Ferrer, Marta, Fitzpatrick, Lorna, Thompton, Christopher D, McKay, Tristan R, Storch, Stephan, Medina, Diego L, Mole, Sara E, Fedichev, Peter O, Almeida, Angeles and Bolaños, Juan P (2022) Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nature Communications, 13 (1). 536. ISSN 2041-1723

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (4MB) | Preview

    Abstract

    CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    6Downloads
    6 month trend
    9Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record