Kumar, Sanjay, Kumar, Akshi ORCID: https://orcid.org/0000-0003-4263-7168 and Panda, BS (2023) Identifying influential nodes for smart enterprises using community structure with Integrated Feature Ranking. IEEE Transactions on Industrial Informatics, 19 (1). pp. 703-711. ISSN 1551-3203
|
Accepted Version
Available under License In Copyright. Download (1MB) | Preview |
Abstract
Finding influential nodes reshuffles the very notion of linear paths in business processes and replaces it with networks of business value within a smart enterprise system. There are many existing algorithms for identifying influential nodes with certain limitations for applying in large-scale networks. In this paper, we propose a community structure with an Integrated Features Ranking (CIFR) algorithm to find influential nodes in the network. Firstly, we use the community detection algorithm to find communities in the system and then we rank the nodes of network based on three factors, namely- local ranking, gateway ranking, and community ranking, collectively termed as integrated features. Our algorithm intends to select influential nodes, which are both globally and locally optimal, leading to overall high information propagation. We perform the experimental results on total eight networks using various evaluation parameters. The obtained results validate superior performance against contemporary algorithms adding value to smart enterprises.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.