e-space
Manchester Metropolitan University's Research Repository

Effect of nitrate supplementation on skeletal muscle motor unit activity during isometric blood flow restriction exercise

Esen, Ozcan, Faisal, Azmy, Zambolin, Fabio, Bailey, Stephen and Callaghan, Michael ORCID logoORCID: https://orcid.org/0000-0003-3540-2838 (2022) Effect of nitrate supplementation on skeletal muscle motor unit activity during isometric blood flow restriction exercise. European Journal of Applied Physiology. ISSN 1439-6319

[img]
Preview
Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Background Nitrate (NO3-) supplementation has been reported to lower motor unit (MU) firing rate (MUFR) during dynamic resistance exercise, however its impact on MU activity during isometric and ischemic exercise is unknown. Purpose To assess the effect of NO3- supplementation on knee extensor MU activities during brief isometric contractions and a 3-min sustained contraction with blood flow restriction (BFR). Methods Sixteen healthy active young adults (six females) completed two trials in a randomized, double-blind, crossover design. Trials were preceded by 5 days of either NO3- (NIT) or placebo (PLA) supplementation. Intramuscular electromyography was used to determine the m.vastus lateralis MU potential (MUP) size, MUFR and near fibre (NF) jiggle (a measure of neuromuscular stability) during brief (20 s) isometric contractions at 25% maximal strength and throughout a 3 min sustained BFR isometric contraction. Results Plasma nitrite (NO2-) concentration was elevated after NIT compared to PLA (475±93 vs.198±46 nmol·L-1, p<0.001). While changes in MUP area, NF jiggle and MUFR were similar between NIT and PLA trials (all p>0.05), MUP duration was shorter with NIT compared to PLA during brief isometric contractions and the sustained ischemic contraction (p<0.01). Additionally, mean MUP duration, MUP area and NF jiggle increased, and MUFR decreased over the 3 min sustained BFR isometric contraction for both conditions (all p<0.05). Conclusion These findings provide insight into the effect of NO3- supplementation on MUP properties and reveal shorter MUP duration after short-term NO3- supplementation which may have potential positive implications for skeletal muscle contractile performance.

Impact and Reach

Statistics

Activity Overview
6 month trend
26Downloads
6 month trend
22Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item