Hoskens, MCJ, Uiga, L ORCID: https://orcid.org/0000-0002-5371-9428, Cooke, A, Capio, CM and Masters, RSW (2022) The Effects of Fatigued Working Memory Functions on Hypothesis Testing During Acquisition of a Motor Skill. Journal of Experimental Psychology: General, 151 (6). pp. 1306-1324. ISSN 0096-3445
|
Accepted Version
Available under License In Copyright. Download (588kB) | Preview |
Abstract
Implicit motor learning paradigms aim to minimize verbal-analytical engagement in motor performance. Some paradigms do this by decreasing working memory activity during practice, which reduces explicit processes associated with the search for motor solutions (e.g., hypothesis testing). Here we designed a mentally demanding motor task to fatigue working memory prior to motor practice and then tested whether it reduced hypothesis testing. Fifty-nine participants were randomly assigned to complete the mentally demanding motor task (cognitive fatigue group) or to complete an undemanding motor task (nonfatigued control group). Feelings of fatigue, working memory functions, electroencephalography (EEG) Fz power, and vagal control were assessed pre and posttask to quantify the effect of the mentally demanding motor task on cognitive fatigue. Thereafter, an adapted shuffleboard task was completed to determine the impact on hypothesis testing. Hypothesis testing was assessed by self-report, technique changes, and equipment-use solutions. Additionally, verbal-analytical engagement in motor performance was (indirectly) gauged with EEG T7-Fz connectivity and T7 power measures. Participants in the cognitive fatigue group reported more fatigue and displayed moderated working memory functions and Fz theta power. During practice of the shuffleboard task, participants also displayed more technique changes and higher verbal-analytical engagement in motor planning (EEG T7-Fz connectivity), compared with participants in the control group. The mentally demanding motor task suppressed workingmemory functions, but resulted in more, rather than less, hypothesis testing during shuffleboard practice. The implications are discussed in the context of implicit motor learning theory.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.