e-space
Manchester Metropolitan University's Research Repository

    The influence of masting phenomenon on growth-climate relationships in trees: Explaining the influence of previous summers' climate on ring width

    Hacket-Pain, AJ, Friend, AD, Lageard, JGA and Thomas, PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: Explaining the influence of previous summers' climate on ring width. Tree Physiology: an international botanical journal, 35 (3). pp. 319-330. ISSN 0829-318X

    [img]
    Preview
    Accepted Version
    Download (2MB) | Preview

    Abstract

    Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for 'carry-over' processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    31Downloads
    6 month trend
    38Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Actions (login required)

    View Item View Item