Manchester Metropolitan University's Research Repository

    MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms

    Garcia-Miranda Ferrari, Alejandro ORCID logoORCID: https://orcid.org/0000-0003-1797-1519, Pimlott, JL, Down, MP, Rowley-Neale, SJ and Banks, CE (2021) MoO2 Nanowire Electrochemically Decorated Graphene Additively Manufactured Supercapacitor Platforms. Advanced Energy Materials, 11 (23). p. 2100433. ISSN 1614-6832

    Published Version
    Available under License Creative Commons Attribution.

    Download (1MB) | Preview


    Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro-conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2-G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium tetrafluoroborate. Optimization of the MoO2-G/AMEs demonstrates capacitance up to 1212 F g–1 when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.

    Impact and Reach


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics for this dataset are available via IRStats2.


    Repository staff only

    Edit record Edit record