e-space
Manchester Metropolitan University's Research Repository

Automated Data Processing of Bank Statements for Cash Balance Forecasting

Griguta, Vlad-Marius and Gerber, Luciano and Crockett, Keeley and Slater-Petty, Helen and Fry, John (2021) Automated Data Processing of Bank Statements for Cash Balance Forecasting. In: SAI Computing Conference 2021, 15 July 2021 - 16 July 2021, Virtual.

[img]
Preview

Download (679kB) | Preview

Abstract

The forecasting of cash inflows and outflows across multiple business operations plays an important role in the financial health of medium and large enterprises. Historically, this function was assigned to specialized treasury departments who projected future cash flows within different business units by processing available information on the expected performance of each business unit (e.g. sales, expenditures). We present an alternative forecasting approach which uses historical cash balance data collected from standard bank statements to systematically predict the future cash positions across different bank accounts. Our main contribution is on addressing challenges in data extraction, curation, and pre-processing, from sources such as digital bank statements. In addition, we report on the initial experiments in using both conventional and machine learning approaches to forecast cash balances. We report forecasting results on both univariate and multivariate, equally-spaced cash balances pertaining to a small, representative subset of bank accounts.

Impact and Reach

Statistics

Downloads
Activity Overview
17Downloads
20Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item