Manchester Metropolitan University's Research Repository

    Cerebrovascular Dysfunction in Atrial Fibrillation

    Junejo, RT, Lip, GYH and Fisher, JP (2020) Cerebrovascular Dysfunction in Atrial Fibrillation. Frontiers in Physiology, 11. ISSN 1664-042X

    Published Version
    Available under License Creative Commons Attribution.

    Download (618kB) | Preview


    © Copyright © 2020 Junejo, Lip and Fisher. It is now well established that besides being the most common sustained arrhythmia, atrial fibrillation (AF) is a major healthcare burden. Risk of debilitating stroke is increased in AF patients, but even in the absence of stroke, this population is at heightened risk of cognitive decline, depression, and dementia. The reasons for this are complex, multifactorial, and incompletely understood. One potential contributing mechanism is cerebrovascular dysfunction. Cerebral blood flow is regulated by chemical, metabolic, autoregulatory, neurogenic, and systemic factors. The dysfunction in one or more of these mechanisms may contribute to the elevated risk of cognitive decline and cerebrovascular events in AF. This short review presents the evidence for diminished cerebral blood flow, cerebrovascular carbon dioxide reactivity (i.e., cerebrovascular vasodilatory reserve), cerebral autoregulation, and neurovascular coupling in AF patients when compared to control participants in sinus rhythm. Further work is needed to understand the physiological mechanisms underpinning these observations and their clinical significance in atrial fibrillation patients.

    Impact and Reach


    Activity Overview
    6 month trend
    6 month trend

    Additional statistics for this dataset are available via IRStats2.


    Repository staff only

    Edit record Edit record