Rjaibi, Walid (2020) ‘Enhanced Encryption and Fine-Grained Authorization for Database Systems. Doctoral thesis (PhD), Manchester Metropolitan University.
|
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (16MB) | Preview |
Abstract
The aim of this research is to enhance fine-grained authorization and encryption so that database systems are equipped with the controls necessary to help enterprises adhere to zero-trust security more effectively. For fine-grained authorization, this thesis has extended database systems with three new concepts: Row permissions, column masks and trusted contexts. Row permissions and column masks provide data-centric security so the security policy cannot be bypassed as with database views, for example. They also coexist in harmony with the rest of the database core tenets so that enterprises are not forced to compromise neither security nor database functionality. Trusted contexts provide applications in multitiered environments with a secure and controlled manner to propagate user identities to the database and therefore enable such applications to delegate the security policy to the database system where it is enforced more effectively. Trusted contexts also protect against application bypass so the application credentials cannot be abused to make database changes outside the scope of the application’s business logic. For encryption, this thesis has introduced a holistic database encryption solution to address the limitations of traditional database encryption methods. It too coexists in harmony with the rest of the database core tenets so that enterprises are not forced to choose between security and performance as with column encryption, for example. Lastly, row permissions, column masks, trusted contexts and holistic database encryption have all been implemented IBM DB2, where they are relied upon by thousands of organizations from around the world to protect critical data and adhere to zero-trust security more effectively.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.