e-space
Manchester Metropolitan University's Research Repository

Oblate versus Prolate Electron Density of Lanthanide Ions: A Design Criterion for Engineering Toroidal Moments? A Case Study on {Ln <sup>III</sup><inf>6</inf> } (Ln=Tb, Dy, Ho and Er) Wheels

Langley, SK and Vignesh, KR and Moubaraki, B and Rajaraman, G and Murray, KS (2019) Oblate versus Prolate Electron Density of Lanthanide Ions: A Design Criterion for Engineering Toroidal Moments? A Case Study on {Ln <sup>III</sup><inf>6</inf> } (Ln=Tb, Dy, Ho and Er) Wheels. Chemistry - A European Journal, 25 (16). pp. 4156-4165. ISSN 0947-6539

[img]
Preview

Download (1MB) | Preview

Abstract

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We report four new complexes based on a {Ln III6 } wheel structure, three of which possess a net toroidal magnetic moment. The four examples consist of {Tb III6 } and {Ho III6 } wheels, which are rare examples of non Dy III based complexes possessing a toroidal magnetic ground state, and a {Dy III6 } complex which improves its toroidal structure upon lowering the crystallographic symmetry from trigonal (R (Formula presented.)) to triclinic (P (Formula presented.)). Notably the toroidal moment is lost for the trigonal {Er III6 } analogue. This suggests the possibility of utilizing the popular concept of oblate and prolate electron density of the ground state M J levels of lanthanide ions to engineer toroidal moments.

Impact and Reach

Statistics

Downloads
Activity Overview
29Downloads
54Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item