Starostin, Eugene L, Grant, Robyn A, Dougill, Gary ORCID: https://orcid.org/0000-0002-8885-6166, van der Heijden, Gert HM and Goss, Victor GA (2020) The Euler spiral of rat whiskers. Science Advances, 6 (3). eaax5145-eaax5145.
|
Published Version
Available under License Creative Commons Attribution Non-commercial. Download (1MB) | Preview |
Abstract
This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat’s cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47<jats:sup>∘</jats:sup> with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat’s tactile sensory shroud or “search space.” The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.