e-space
Manchester Metropolitan University's Research Repository

Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting

King, LA and Hellstern, TR and Park, J and Sinclair, R and Jaramillo, TF (2017) Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting. ACS Applied Materials and Interfaces, 9 (42). pp. 36792-36798. ISSN 1944-8244

[img]
Preview

Download (890kB) | Preview

Abstract

© 2017 American Chemical Society. Developing materials, interfaces, and devices with improved stability remains one of the key challenges in the field of photoelectrochemical water splitting. As a barrier to corrosion, molybdenum disulfide is a particularly attractive protection layer for photocathodes due to its inherent stability in acid, the low permeability of its basal planes, and the excellent hydrogen evolution reaction (HER) activity the MoS2 edge. Here, we demonstrate a stable silicon photocathode containing a protecting layer consisting of molybdenum disulfide, molybdenum silicide, and silicon oxide which operates continuously for two months. We make comparisons between this system and another molybdenum sulfide-silicon photocathode embodiment, taking both systems to catastrophic failure during photoelectrochemical stability measurements and exploring mechanisms of degradation. X-ray photoelectron spectroscopy and transmission electron microscopy provide key insights into the origins of stability.

Impact and Reach

Statistics

Downloads
Activity Overview
201Downloads
132Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item