e-space
Manchester Metropolitan University's Research Repository

    Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes

    Hellstern, Thomas R, Nielander, Adam C, Chakthranont, Pongkarn, King, Laurie A ORCID logoORCID: https://orcid.org/0000-0002-0772-2378, Willis, Joshua J, Xu, Shicheng, MacIsaac, Callisto, Hahn, Christopher, Bent, Stacey F, Prinz, Fritz B and Jaramillo, Thomas F (2019) Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. ACS Applied Nano Materials, 2 (1). pp. 6-11. ISSN 2574-0970

    [img]
    Preview
    Accepted Version
    Available under License In Copyright.

    Download (1MB) | Preview

    Abstract

    Photoelectrochemical water splitting is a promising route for sustainable hydrogen production. Herein, we demonstrate a photoelectrode motif that enables a nanostructured large-surface area electrocatalyst without requiring a nanostructured semiconductor surface with the goal of promoting electrocatalysis while minimizing surface recombination. We compare the photoelectrochemical H2 evolution activity of two silicon photocathode nanostructuring strategies: (1) direct nanostructuring of the silicon surface and (2) incorporation of nanostructured zinc oxide to increase the electrocatalyst surface area on planar silicon. We observed that silicon photocathodes that utilized nanostructured ZnO supports outperformed nanostructured silicon electrodes by ∼50 mV at open circuit under 1 sun illumination and demonstrated comparable electrocatalytic activity.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    617Downloads
    6 month trend
    347Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record