Webb, P Taylor, Sellar, Sam ORCID: https://orcid.org/0000-0002-2840-5021 and Gulson, Kalervo N (2020) Anticipating education: governing habits, memories and policy-futures. Learning, Media and Technology, 45 (3). pp. 284-297. ISSN 1743-9884
|
Accepted Version
Available under License In Copyright. Download (2MB) | Preview |
Abstract
The use of data to govern education is increasingly supported by the use of knowledge-based technologies, including algorithms, artificial intelligence (AI), and tracking technologies (Fenwick, et al., 2014). New forms of datafication and automation enable governments and other powerful stakeholders to draw from the past to construct images of educational futures in order to steer the present (Hartong, 2019). This paper examines the competing conceptions of time and temporality that AI posits for policy and practice when used to anticipate educational futures. We argue that most educational futures are already delineated, and machinic expressions of time are the chronologies, habits, and memories that the educated subject inhabits rather than produces. If resetting educational habits and memories can be an alternative to algorithmic anticipations of education then we believe, paradoxically, that machines may help to reset them by accelerating them.
Impact and Reach
Statistics
Additional statistics for this dataset are available via IRStats2.