e-space
Manchester Metropolitan University's Research Repository

Compositional response of Amazon forests to climate change

Esquivel-Muelbert, A, Baker, TR, Dexter, KG, Lewis, SL, Brienen, RJW, Feldpausch, TR, Lloyd, J, Monteagudo-Mendoza, A, Arroyo, L, Álvarez-Dávila, E, Higuchi, N, Marimon, BS, Marimon-Junior, BH, Silveira, M, Vilanova, E, Gloor, E, Malhi, Y, Chave, J, Barlow, J, Bonal, D, Davila Cardozo, N, Erwin, T, Fauset, S, Hérault, B, Laurance, S, Poorter, L, Qie, L, Stahl, C, Sullivan, MJP ORCID logoORCID: https://orcid.org/0000-0002-5955-0483, ter Steege, H, Vos, VA, Zuidema, PA, Almeida, E, Almeida de Oliveira, E, Andrade, A, Vieira, SA, Aragão, L, Araujo-Murakami, A, Arets, E, Aymard C, GA, Baraloto, C, Camargo, PB, Barroso, JG, Bongers, F, Boot, R, Camargo, JL, Castro, W, Chama Moscoso, V, Comiskey, J, Cornejo Valverde, F, Lola da Costa, AC, del Aguila Pasquel, J, Di Fiore, A, Fernanda Duque, L, Elias, F, Engel, J, Flores Llampazo, G, Galbraith, D, Herrera Fernández, R, Honorio Coronado, E, Hubau, W, Jimenez-Rojas, E, Lima, AJN, Umetsu, RK, Laurance, W, Lopez-Gonzalez, G, Lovejoy, T, Aurelio Melo Cruz, O, Morandi, PS, Neill, D, Núñez Vargas, P, Pallqui Camacho, NC, Parada Gutierrez, A, Pardo, G, Peacock, J, Peña-Claros, M, Peñuela-Mora, MC, Petronelli, P, Pickavance, GC, Pitman, N, Prieto, A, Quesada, C, Ramírez-Angulo, H, Réjou-Méchain, M, Restrepo Correa, Z, Roopsind, A, Rudas, A, Salomão, R, Silva, N, Silva Espejo, J, Singh, J, Stropp, J, Terborgh, J, Thomas, R, Toledo, M, Torres-Lezama, A, Valenzuela Gamarra, L, van de Meer, PJ, van der Heijden, G and van der Hout, P (2019) Compositional response of Amazon forests to climate change. Global Change Biology, 25 (1). pp. 39-56. ISSN 1354-1013

[img]
Preview

Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

© 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.

Impact and Reach

Statistics

Activity Overview
6 month trend
214Downloads
6 month trend
222Hits

Additional statistics for this dataset are available via IRStats2.

Altmetric

Actions (login required)

View Item View Item