e-space
Manchester Metropolitan University's Research Repository

    Generalisation in Environmental Sound Classification: The ‘Making Sense of Sounds’ Data Set and Challenge

    Kroos, Christian, Bones, Oliver ORCID logoORCID: https://orcid.org/0000-0002-1608-3459, Cao, Yin, Harris, Lara, Jackson, Philip JB, Davies, William J, Wang, Wenwu, Cox, Trevor J and Plumbley, Mark D (2019) Generalisation in Environmental Sound Classification: The ‘Making Sense of Sounds’ Data Set and Challenge. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 12 May 2019 - 17 May 2019, Brighton, United Kingdom.

    [img]
    Preview
    Accepted Version
    Available under License In Copyright.

    Download (315kB) | Preview

    Abstract

    Humans are able to identify a large number of environmental sounds and categorise them according to high-level semantic categories, e.g. urban sounds or music. They are also capable of generalising from past experience to new sounds when applying these categories. In this paper we report on the creation of a data set that is structured according to the top-level of a taxonomy derived from human judgements and the design of an associated machine learning challenge, in which strong generalisation abilities are required to be successful. We introduce a baseline classification system, a deep convolutional network, which showed strong performance with an average accuracy on the evaluation data of 80.8%. The result is discussed in the light of two alternative explanations: An unlikely accidental category bias in the sound recordings or a more plausible true acoustic grounding of the high-level categories.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    450Downloads
    6 month trend
    267Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record