e-space
Manchester Metropolitan University's Research Repository

    Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy

    Sparkes, Robert Bryon, Maher, Melissa, Blewett, Jerome, Selver, Ayça Doğrul, Gustafsson, Örjan, Semiletov, Igor P and Van Dongen, Bart E (2018) Carbonaceous material export from Siberian permafrost tracked across the Arctic Shelf using Raman spectroscopy. Cryosphere, 12 (10). pp. 3293-3309. ISSN 1994-0416

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution.

    Download (17MB) | Preview

    Abstract

    © Author(s) 2018. Warming-induced erosion of permafrost from Eastern Siberia mobilises large amounts of organic carbon and delivers it to the East Siberian Arctic Shelf (ESAS). In this study Raman spectroscopy of carbonaceous material (CM) was used to characterise, identify and track the most recalcitrant fraction of the organic load: 1463 spectra were obtained from surface sediments collected across the ESAS and automatically analysed for their Raman peaks. Spectra were classified by their peak areas and widths into disordered, intermediate, mildly graphitised and highly graphitised groups and the distribution of these classes was investigated across the shelf. Disordered CM was most prevalent in a permafrost core from Kurungnakh Island and from areas known to have high rates of coastal erosion. Sediments from outflows of the Indigirka and Kolyma rivers were generally enriched in intermediate CM. These different sediment sources were identified and distinguished along an E-W transect using their Raman spectra, showing that sediment is not homogenised on the ESAS. Distal samples, from the ESAS slope, contained greater amounts of highly graphitised CM compared to the rest of the shelf, attributable to degradation or, more likely, winnowing processes offshore. The presence of all four spectral classes in distal sediments demonstrates that CM degrades much more slowly than lipid biomarkers and other traditional tracers of terrestrial organic matter and shows that alongside degradation of the more labile organic matter component there is also conservative transport of carbon across the shelf toward the deep ocean. Thus, carbon cycle calculations must consider the nature as well as the amount of carbon liberated from thawing permafrost and other erosional settings.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    471Downloads
    6 month trend
    340Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record