e-space
Manchester Metropolitan University's Research Repository

    Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers

    Steen Redeker, E, Eersels, K, Akkermans, O, Royakkers, J, Dyson, S, Nurekeyeva, K, Ferrando, B, Cornelis, P, Peeters, M, Wagner, P, Dilien, H, van Grinsven, B and Cleij, TJ (2017) Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers. ACS Infectious Diseases, 3 (5). pp. 388-397. ISSN 2373-8227

    [img]
    Preview
    Published Version
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (1MB) | Preview

    Abstract

    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surfaceimprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose−response curve was constructed to determine a limit of detection of 1 × 104 CFU mL−1 , indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 104 CFU mL−1 in spiked urine samples.

    Impact and Reach

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    0Hits

    Additional statistics for this dataset are available via IRStats2.

    Altmetric

    Repository staff only

    Edit record Edit record