Manchester Metropolitan University's Research Repository

Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

Hussain, S and Slevin, M and Ahmed, N and West, D and Choudhary, MI and Naz, H and Gaffney, J (2009) Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis. BMC Cell Biology, 10. ISSN 1471-2121


Available under License Creative Commons Attribution.

Download (2MB) | Preview


BACKGROUND: Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2) isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{alpha-L-rhamnopyranosyl-(1-->2)-[alpha-L-rhamnopyranosyl-(1-->6)}-beta-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50) was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. RESULTS: Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 +/- 0.18 - 48.90 +/- 0.40 microM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 +/- 1.04 and 9.32 +/- 0.082 muM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. CONCLUSION: Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis.

Impact and Reach


Activity Overview

Additional statistics for this dataset are available via IRStats2.


Actions (login required)

View Item View Item